Чтобы получить полную энергию, нужно эту плотность проинтегрировать по всему пространству. Используя элемент объема 4pr2/dr, найдем полную энергию, которую мы обозначим через Uэл:
Это выражение интегрируется очень просто. Нижний предел интегрирования равен а, а верхний — бесконечности, поэтому
(28.1)
Если вместо q подставить заряд электрона qeи обозначить символом e2комбинацию qe2/4pe0, то получим
(28.2)
Все идет хорошо до тех пор, пока мы не переходим к точечному заряду, т. е. пока мы не положим а = 0. Но как только мы переходим к точечному заряду, начинаются все наши беды. И все потому, что энергия поля изменяется обратно пропорционально четвертой степени расстояния, интеграл по объему становится расходящимся, а количество энергии, окружающей точечный заряд, оказывается бесконечным.
Но чем, собственно, плоха бесконечная энергия? Есть ли какая-то реальная трудность в том, что энергия никуда не может уйти от заряда и обречена навсегда оставаться около него? Досадно, конечно, что величина оказалась бесконечной, но главный вопрос в том — есть ли здесь какой-нибудь наблюдаемый физический эффект? Чтобы ответить на него, нужно обратиться не к энергии, а к чему-то другому. Нас может, скажем, заинтересовать, как изменяется энергия, когда заряд движется. Если при этом окажется бесконечным изменение, то дело совсем плохо.
§ 2. Импульс поля движущегося заряда
Возьмем равномерно движущийся электрон и предположим на минуту, что скорость его мала по сравнению со скоростью света. С таким движущимся электроном всегда связан какой-то импульс — даже если у электрона до того, как он был заряжен, не было никакой массы — это импульс электромагнитного поля. Мы покажем, что для малых скоростей он пропорционален скорости v и совпадает с ней по направлению. В точке Р, находящейся на расстоянии r от центра заряда и под углом 6 к линии его движения (фиг. 28.1), электрическое поле радиально, а магнитное, как мы видели, равно vXE/c2. Плотность же импульса, в соответствии с формулой (27.21), будет
Она обязательно направлена по линии движения, как это видно из рисунка, и по величине равна
Поле симметрично относительно линии движения заряда, поэтому поперечные компоненты дадут в сумме нуль, и полученный в результате импульс будет параллелен скорости v.
Фиг. 28.1. Поля Е и В и плотность импульса g для положительного электрона.
Для отрицательного электрона поля Е и В повернуты в обратную сторону, но g остается тем же.
Фиг. 28.2. Элемент объема 2pr2sinqdqdr, используемый при вычислении импульса поля.
Величину составляющей вектора g в этом направлении, равную gsinq, нужно проинтегрировать по всему пространству. В качестве элемента объема возьмем кольцо, плоскость которого перпендикулярна v (фиг. 23.2). Объем его равен 2pr2sinqdqdr. Полный импульс будет при этом
Поскольку Е не зависит от угла q (для v<<c), то по углу можно немедленно проинтегрировать:
Интегрирование по q ведется в пределах от 0 до p, так что этот интеграл дает просто множитель 4/3, т. е.
А такой интеграл (для v<<с) мы только что вычисляли, чтобы найти энергию; он равен q2/16p2e02a, так что
или
(28.3)
Импульс поля, т. е. электромагнитный импульс, оказался пропорциональным v. В частности, тоже самое выражение получилось бы для частицы с массой, равной коэффициенту пропорциональности при v. Вот почему этот коэффициент пропорциональности мы можем назвать электромагнитной массой mэм, т. е. положить
§ 3. Электромагнитная масса