Выбрать главу

Откуда же вообще возникло понятие массы? В наших зако­нах механики мы предполагали, что любому предмету присуще некое свойство, называемое массой. Оно означает пропорцио­нальность импульса предмета его скорости. Теперь же мы обнаружили, что это свойство вполне понятно — заряженная частица несет импульс, который пропорционален ее скорости. Дело можно представить так, как будто масса — это просто электродинамический эффект. Ведь до сих пор причина возник­новения массы оставалась нераскрытой. И вот, наконец, в элект­родинамике нам представилась прекрасная возможность понять то, чего мы никогда не понимали раньше. Прямо как с неба (а точнее, от Максвелла и Пойнтинга) свалилось на нас объяс­нение пропорциональности импульса любой заряженной ча­стицы ее скорости через электромагнитные свойства.

Но давайте все-таки встанем на более консервативную точку зрения и будем говорить, по крайней мере временно, что имеется два сорта масс и что полный импульс предмета должен быть суммой механического и электромагнитного импульсов. Причем механический импульс равен произведению «механической» массы mмех на скорость v. В тех экспериментах, где масса частицы измеряется, например, определением импульса или «кручением на веревочке», мы находим ее полную массу. Им­пульс равен произведению именно полной массы (mмех+mэм) на скорость. Таким образом, наблюдаемая масса может состоять из двух (а может быть, и из большего числа, если мы учтем другие поля) частей: механической и электромагнитной. Мы знаем, что наверняка имеется электромагнитная часть; для нее у нас есть даже формула. А сейчас появилась увлекательная возможность выбросить механическую массу совсем и считать массу полностью электромагнитной.

Посмотрим, каков должен быть размер электрона, если «механическая» часть массы полностью отсутствует. Это можно выяснить, приравнивая электромагнитную массу (28.4) наблю­даемой массе электрона, т. е. mе. Получаем

(28.5)

Величина

(28.6)

называется «классическим радиусом электрона» и равна она 2,82X10=13 см,

т. е. одной стотысячной диаметра атома.

Почему радиусом электрона названа величина r0, а не а? Потому что мы можем провести те же самые расчеты с другим распределением заряда. Мы можем взять его равномерно размазанным по всему объему шара или наподобие пушистого шарика. Например, для заряда, равномерно распределенного по всему объему сферы, коэффициент 2/3 заменяется коэффициентом 4/5. Вместо того чтобы спорить, какое распределение правильно, а какое нет, было решено взять в качестве «номинального» ра­диуса величину r0. А разные теории приписывают к ней свой коэффициент.

Давайте продолжим наше обсуждение электромагнитной теории массы. Мы провели расчет для v<<с, а что произойдет при переходе к большим скоростям? Первые попытки вычисления привели к какой-то путанице, но позднее Лоренц понял, что при больших скоростях заряженная сфера должна сжиматься в эллипсоид, а поля должны изменяться согласно полученным нами для релятивистского случая в гл. 26 формулам (26.6) и (26.7). Если вы проделаете все вычисления для р в этом слу­чае, то получите, что для произвольной скорости v импульс умножается еще на 1/Ц(1-v2/c2), т. е.

(28.7)

Другими словами, электромагнитная масса возрастает с увеличением скорости обратно пропорционально Ц(1-v2/c2). Это открытие было сделано еще до создания теории относительности.

Тогда предлагались даже эксперименты по определению зависимости наблюдаемой массы от скорости, чтобы установить, какая часть ее электрическая по своему происхождению, а какая — механическая. В те времена считали, что электромаг­нитная часть массы должна зависеть от скорости, а ее механи­ческая часть — нет.

Но пока ставились эксперименты, теоретики тоже не дремали. И вскоре была развита теория относительности, которая дока­зала, что любая масса, независимо от своего происхождения, должна изменяться как m0/Ц(1-v2/c2). Таким образом, уравнение (28.7) было началом теории, согласно которой масса зависит от скорости.

А теперь вернемся к нашим вычислениям энергии поля, которые привели к выводу выражения (28.2). Энергия U в соот­ветствии с теорией относительности эквивалентна массе U/с2, поэтому (28.2) говорит, что поле электрона должно обладать массой