Выбрать главу

Фиг. 29.2. 180-градусный спек­трометр импульсов с однородным магнитным полем.

а — траектории частиц с разными импульсами; 6 траектории частиц, влетающих под равными углами. Маг­нитное поле направлено перпендикулярно плоскости рисунка.

Нет необходимости, разу­меется, чтобы перед регист­рацией частица поворачива­лась на 180°, но такой «180-градусный спектрометр» обладает особым свойством: для него совсем необяза­тельно, чтобы частицы вхо­дили под прямым углом к краю поля. На фиг. 29.2, б показаны траектории трех частиц с одинаковым импульсом, но входящих в поле под различными углами. Вы видите, что траектории у них разные, но все они покидают поле очень близко к точке С. В подобных случаях мы говорим о «фокусировке». Преимущество такого способа фо­кусировки в том, что она позволяет допускать в точку А частицы, летящие под большими углами, хотя обычно, как видно из рисунка, углы эти в какой-то степени ограничены. Большое угловое разрешение обычно означает регистрацию за данный промежуток времени большего числа частиц и сокращения, следовательно, времени измерения.

Изменяя магнитное поле, передвигая счетчик вдоль оси х или же покрывая с помощью многих счетчиков целую область по оси х, можно измерить «спектр» падающего пучка [«спектр» им­пульсов f(p) означает, что число частиц с импульсами в интер­вале между р и (p+dp) равно f(p)dp]. Такие измерения про­водятся, например, при определении распределения по энер­гиям в b-распаде различных ядер.

Имеется еще много других типов импульсных спектрометров, но я расскажу вам только об одном из них, характерном особен­но большим разрешением по пространственному углу. В основе его лежат винтовые орбиты в однородном поле, как это показано на фиг. 29.1. Представьте себе цилиндрическую систему коорди­нат r, q, z, причем ось z выбрана по направлению магнитного поля. Если частица испускается из начала координат под углом

Фиг. 29.3. Спектро­метр с аксиальным полем.

а к направлению оси z, то она будет двигаться по спиральной линии, описываемой выражением

входящие туда параметры а, b и k нетрудно выразить через r, a и магнитное ноле В. Если для данного импульса, но разных начальных углов отложить расстояние r от оси как функцию z, то мы получим кривые, подобные сплошным кривым на фиг. 29.3. (Вы помните — ведь это своего рода проекция винтовой траек­тории.) Когда угол между осью и начальным направлением велик, максимальное значение r тоже будет большим, а продоль­ная скорость при этом уменьшается, так что выходящие под раз­личными углами траектории стремятся собраться в своего рода фокус (точка А на рисунке). Если на расстоянии А поставить узкое кольцевое отверстие, то частицы, летящие в некоторой области углов, могут пройти через отверстие и достигнуть оси, где для их регистрации мы приготовим протяженный детектор D. Частицы, вылетающие из начала координат под тем же са­мым углом, но с большим импульсом, летят по пути, обозначен­ному нами пунктирной линией, и не могут пройти через отвер­стие А. Итак, прибор выбирает небольшой интервал импульса. Преимущество такого спектрометра по сравнению с описанным ранее состоит в том, что отверстия А и А' можно сделать коль­цевыми, так что могут быть зарегистрированы частицы в до­вольно большом телесном угле. Это преимущество особенно важно для слабых источников и при очень точных измерениях, когда необходимо использовать возможно большую долю испу­щенных источником частиц.

Фиг. 29.4. Внутри эллип­соидальной катушки, ток которой на любом интер­вале оси Dx одинаков, воз­никает однородное поле.

Но за это преимущество приходится расплачиваться, ибо метод требует большого объема однородного магнитного поля, и он практически пригоден только для частиц с небольшой энергией. Если вы помните, один из способов получения одно­родного поля — это намотать провод на сферу так, чтобы поверх­ностная плотность тока была пропорциональна синусу угла. Вы можете доказать, что то же самое справедливо и для эллипсо­ида вращения. Поэтому очень часто такой спектрометр изготов­ляют, просто наматывая эллипсоидальные витки на деревянный или алюминиевый каркас. Единственное, что при этом требует­ся,— это чтобы ток на любом интервале оси Ах (фиг. 29.4) был одним и тем же.