Выкладки можно сэкономить, если этот результат сразу же подставить в уравнения для напряжений. В этой схеме таких уравнений два:
-El + I2z2-Ilzl=0 и Ј2-(Il + I2)z3-I2z2=0.
На два уравнения приходится два неизвестных тока. Решая их, получаем 11и I2:
(22.20)
и
(22.21)
А третий ток получается как сумма первых двух.
Вот еще пример цепи, которую по правилам параллельных и последовательных импедансов рассчитывать нельзя
Фиг. 22.14. Мостиковая схема.
(фиг. 22.14). Такую схему называют «мостик». Она встречается во многих приборах, измеряющих импедансы. В таких схемах обычно интересуются таким вопросом:
как должны соотноситься различные импедансы, чтобы ток через импеданс zsбыл равен нулю? Вам предоставляется право найти те условия, при которых это действительно так,
§ 4. Эквивалентные контуры
Положим, мы подключили генератор Ј к цепи, в которой есть множество сложных переплетений импедансов (схематически это показано на фиг. 22.15, а). Все уравнения, вытекающие из правил Кирхгофа, линейны, и поэтому, вычислив из них ток I через генераторы, мы получим величину I, пропорциональную e. Можно написать
где теперь zэфф— это некоторое комплексное число, алгебраическая функция всех элементов цепи. (Если в цепи нет никаких
генераторов, кроме упомянутого, то в формуле не будет добавочной части, не зависящей от e.) Но получившееся уравнение — это как раз то, которое нужно было бы написать для схемы фиг. 22.15, б. И покуда нас интересует только то, что происходит слева от зажимов а и b, до тех пор обе схемы фиг. 22.15 эквивалентны.
Фиг. 22.15. Любая сеть пассивных элементов с двумя выводами эквивалентна эффективному импедансу.
Фиг. 22.16. Любую сеть с двумя выводами можно заменить генератором, последовательно соединенным с импедансом.
И поэтому можно сделать общее утверждение, что любую цепь пассивных элементов с двумя выводами можно заменить одним-единственным импедансом zэфф не изменив в остальной части цепи ни токов, ни напряжений. Утверждение это, естественно, всего лишь мелкое замечание о том, что следует из правил Кирхгофа, а в конечном счете — из линейности уравнений Максвелла.
Идею эту можно обобщить на схемы, в которые входят как генераторы, так и импедансы. Представьте, что мы глядим на эту схему «с точки зрения» одного из импедансов, который мы обозначим zn (фиг. 22.16, а). Если бы решить уравнение для тока, мы бы увидели, что напряжение Vnмежду зажимами а и b есть линейная функция I, которую можно записать в виде
(22.22)
Здесь А и В зависят от генераторов и импедансов в цепи слева от зажимов. Например, в схеме, показанной на фиг. 22.13, мы находим V1=I1zl. Это можно переписать [используя (22.20)] в виде
(22.23)
Тогда полное решение мы получаем, комбинируя это уравнение с уравнением для импеданса z1 т. е. с V1=I1z1, или в общем случае комбинируя (22.22) с
Если мы рассмотрим теперь случай, когда zn подключается к простой цепи из последовательно соединенных генератора и импеданса (см. фиг. 22.15, б), то уравнение, соответствующее (22.22), примет вид
что совпадает с (22.22), если принять Sэфф=A и zэфф=B. Значит, если нас интересует лишь то, что происходит направо от выводов а и b, то произвольную схему фиг. 22.16 можно всегда заменить эквивалентным сочетанием генератора, последовательно соединенного с импедансом.
§ 5. Энергия
Мы видели, что для создания в индуктивности тока I надо из внешней цепи доставить энергию U=1/2LI2. Когда ток спадает до нуля, эта энергия уводится обратно во внешнюю цепь.
В идеальной индуктивности механизма потерь энергии нет. Когда через индуктивность течет переменный ток, энергия перетекает то туда, то сюда — от индуктивности к остальной части цепи и обратно, но средняя скорость, с какой энергия передается в цепь, равна нулю. Мы говорим, что индуктивность — недиссипативный элемент, в ней не растрачивается (не «диссипирует») электрическая энергия.