В конструкции В. Самойлова ротор состоит из 4 лопастей, что сделано для более равномерного вращения.
Ротор — наиболее важная часть ветроустановки. От его формы и размера лопастей зависят мощность и скорость вращения вала ветродвигателя. Чем больше общая поверхность лопастей, образующих ометаемую поверхность, тем меньше число оборотов ротора.
Вращение ротора происходит за счет аэродинамической несимметричности. Набегающий поперек оси ротора поток ветра соскальзывает с выпуклой стороны лопасти и попадает на противоположный карман лопасти. За счет разности давлений на выпуклую и вогнутую поверхности создается тяга, которая и раскручивает ротор. У такого ротора большой крутящий момент. Ротор диаметром 1 м по мощности соответствует трехлопастному пропеллеру диаметром 2,5 м.
Роторные ветродвигатели работают значительно стабильнее в условиях резких колебаний ветра, чем винтовые. Роторы тихоходны, действуют при любом направлении ветра, но развивают всего 200–500 об/мин.
Роторные ветроколеса от сильного порыва ветра в разнос не идут. От повышения количества оборотов асинхронного генератора на выходе напряжение не растет. Поэтому в этом материале автоматическое изменение угла лопастей ротора в зависимости от скорости ветра не рассмотрено.
Известны различные виды роторных ветроколес на вертикальном валу. Назовем некоторые из них.
1. Четырехлопастное роторное колесо — тихоходное с КПД до 15 % (рис. 2).
Рис. 2. Крепление лопастей ротора на крестовине:
1 — лопасти, 2 — крестовина, 3 — вал, 4 — болты крепления (М12-М14).
2. Двухъярусное роторное ветрокопесо (рис. 3). Оно проще, обладает более высоким КПД (до 19 %) и развивает большее число оборотов, чем четырехлопастное. При этом необходимо увеличивать диаметр вала для сохранения прочности и жесткости установки.
Рис. 3. Двухъярусное роторное колесо:
1 — подшипник, 2 — корпус подшипника, 3 — дополнительное крепление вала четырьмя растяжками, 4 — вал.
3. Ветроколесо Савониуса (рис. 4,в). Оно развивает меньшее число оборотов, чем двухлопастное колесо. Коэффициент использования ветровой энергии не превышает 12 %. В основном применяется для привода поршневых насосов.
4. Карусельное ветроколесо (рис. 4,а,б) — самая простая конструкция. Это ветроколесо развивает малые обороты, имеет низкую удельную мощность. КПД его — до 0,1.
Рис. 4. Возможные схемы укрепления роторных ветроколес на вертикальном валу:
а, б — карусельные ветроколеса: в — ветроколесо Савониуса.
А теперь перейдем к установке, разработанной, В. Самойловым из Чувашии, который построил свою ВЭУ по первому варианту (см. рис. 2).
Сделать лопасти ротора ВЭУ можно из 100, 200 или 500-литровой железной бочки (рис. 5). Бочку разрезают шлифмашинкой. Резка сваркой недопустима: от температуры металл коробится. Борта вырезанной лопасти усиливают, приваривая к ним прутки арматуры или катанки 6–8 мм.
Рис. 5. Лопасть ветряка, изготовленная из 1/4 бочки и схема раскроя:
1 — отверстие крепления к крестовине, 2 — усиление борта, 3 — контур лопастей.
Лопасти 1 ротора крепятся к двум крестовинам 2 болтами М12…М14 (см. рис. 2). Верхняя крестовина изготавливается из листовой стали толщиной 6…8 мм. Между бортом каждой лопасти и валом ротора необходимо оставлять зазор 150 мм. Нижнюю крестовину изготавливают более прочной, так как весь вес лопастей приходится на нее. Для ее изготовления берется швеллер с высотой стенки 50–60 мм и длиной не менее 1 м, зависящей от применяемой лопасти (бочки).
Строительная часть и главный вал (см. рис. 1)
К стойке 6, сделанной из швеллера, приварена рама из уголков для закрепления генератора 8. Нижний конец стойки приварен к угольнику, забитому в землю.
Вал 3 ротора лучше делать из двух частей — для удобства расточки его концов под подшипники. Подшипники 4 в корпусах (буксах), согласованных по размерам с валом, закрепляются на стенке швеллера на болтах. Части вала ротора соединяют между собой с помощью муфты сваркой или на шпонке. Диаметр вала 35–50 мм.