Выбрать главу

Классические космологические решения уравнений общей теории относительности Эйнштейна (ОТО), которые были найдены в 1922 году Александром Фридманом, имеют простейшую топологию. Их пространственные сечения напоминают плоскости (для бесконечных решений) или сферы (для ограниченных решений). Но у подобных вселенных, оказывается, существует альтернатива: не имеющая краев и границ, замкнутая сама на себя вселенная конечного объема.

Первые решения, найденные Фридманом, описывали вселенные, заполненные только одним сортом вещества. Различные картины возникали из-за разницы в средней плотности материи: если она превышала критический уровень, получалась замкнутая вселенная с положительной пространственной кривизной, конечными размерами и временем жизни. Ее расширение постепенно замедлялось, останавливалось и сменялось сжатием в точку. Вселенная с плотностью ниже критической имела отрицательную кривизну и бесконечно расширялась, скорость ее раздувания стремилась к некоторой постоянной величине. Эта модель называется открытой. Плоская Вселенная — промежуточный случай с плотностью, точно равной критической, — бесконечна и ее мгновенные пространственные сечения являются плоским евклидовым пространством с нулевой кривизной. Плоская, так же как и открытая, расширяется бесконечно долго, но скорость ее расширения при этом стремится к нулю. Позднее были придуманы более сложные модели, в которых однородная и изотропная вселенная была заполнена многокомпонентным веществом, видоизменяющимся со временем.

Современные наблюдения показывают, что сейчас Вселенная расширяется с ускорением (см. «За горизонтом вселенских событий», № 3, 2006). Такое поведение возможно, если пространство заполнено неким веществом (называемым часто темной энергией) с высоким отрицательным давлением, близким к плотности энергии этого вещества. Это свойство темной энергии приводит к возникновению как бы антигравитации, которая преодолевает на больших масштабах силы притяжения обычной материи. Первая подобная модель (с так называемым лямбдачленом) была предложена еще самим Альбертом Эйнштейном.

Особый режим расширения Вселенной возникает, если давление этой материи не остается постоянным, а возрастает со временем. В этом случае увеличение размеров нарастает настолько быстро, что Вселенная становится бесконечной за конечное время. Такое резкое раздувание пространственных размеров, сопровождаемое разрушением всех материальных объектов, от галактик до элементарных частиц, получило название Большого разрыва (Big Rip).

Все эти модели не предполагают каких-либо особых топологических свойств у Вселенной и представляют ее похожей на наше привычное пространство. Такая картина хорошо согласуется с теми данными, которые астрономы получают с помощью телескопов, регистрирующих инфракрасное, видимое, ультрафиолетовое и рентгеновское излучения. И только данные радионаблюдений, а именно детальное изучение реликтового фона, заставили ученых усомниться в том, что наш мир устроен столь прямолинейно.

Заглянуть за «огненную стену», отделяющую нас от событий первых тысяч лет жизни нашей Вселенной, ученым удастся не скоро. Зато с помощью выводимых в космос лабораторий мы с каждым годом все больше узнаем о том, что происходило после превращения горячей плазмы в теплый газ

Орбитальный радиоприемник

Первые результаты, полученные космической обсерваторией WMAP (Wilkinson Microwave Anisotropy Probe), измерявшей мощность реликтового излучения, были опубликованы в январе 2003 года и содержали так много долгожданной информации, что ее осознание не завершено и сегодня. Обычно для объяснения новых космологических данных используют физику: уравнения состояния вещества, законы расширения и спектры начальных возмущений. Но в этот раз характер обнаруженной угловой неоднородности излучения потребовал совсем другого объяснения — геометрического. Более же точно — топологического.

Основной целью WMAP было построение подробной карты температуры реликтового излучения (или, как его еще называют, микроволнового фона). WMAP — это сверхчувствительный радиоприемник, одновременно регистрирующий сигналы, приходящие из двух почти диаметрально противоположных точек неба. Обсерватория была запущена в июне 2001 года на особо спокойную и «тихую» орбиту, находящуюся в так называемой лагранжевой точке L2 в полутора миллионах километров от Земли. Этот спутник весом 840 кг на самом деле находится на околосолнечной орбите, однако благодаря совместному действию гравитационных полей Земли и Солнца период его обращения в точности равен одному году, и он никуда не улетает от Земли. На такую далекую орбиту спутник был запущен для того, чтобы помехи от земной техногенной активности не мешали приему реликтового радиоизлучения.

На основе полученных космической радиообсерваторией данных удалось с беспрецедентной точностью определить огромное количество космологических параметров. Во-первых, отношение полной плотности Вселенной к критической — 1,02±0,02 (то есть наша Вселенная плоская или замкнутая с очень малой кривизной). Во-вторых, постоянную Хаббла, характеризующую расширение нашего Мира на больших масштабах, — 72±2 км/с/Мпк. В-третьих, возраст Вселенной — 13,4±0,3 млрд. лет и красное смещение, соответствующее времени рекомбинации, — 1088±2 (это среднее значение, толщина границы рекомбинации существенно больше указанной ошибки). Наиболее сенсационным для теоретиков результатом стал угловой спектр возмущений реликтового излучения, точнее, слишком маленькая величина второй и третьей гармоники.

Такой спектр строится путем представления температурной карты в виде суммы различных сферических гармоник (мультиполей). При этом из общей картины возмущений выделяются переменные составляющие, укладывающиеся на сфере целое число раз: квадруполь — 2 раза, октуполь — 3 раза, и так далее. Чем выше номер сферической гармоники, тем более высокочастотные колебания фона она описывает и тем меньше угловой размер соответствующих «пятен». Теоретически число сферических гармоник бесконечно, но для реальной карты наблюдений оно ограничивается тем угловым разрешением, с которым проводились наблюдения.

Для корректного измерения всех сферических гармоник необходима карта всей небесной сферы, и WMAP получает ее верифицированный вариант как раз за год. Первые такие не очень подробные карты были получены в 1992 году в экспериментах «Реликт» и COBE (Cosmic Background Explorer).

Чем бублик похож на кофейную чашку

Есть такой раздел математики — топология, которая исследует свойства тел, сохраняющиеся при любых их деформациях без разрывов и склеек. Представьте себе, что интересующее нас геометрическое тело гибкое и легко деформируется. В этом случае, например, куб или пирамиду можно легко преобразовать в сферу или бутылку, тор («бублик») — в кофейную чашку с ручкой, а вот превратить сферу в чашку с ручкой не удастся, если не разрывать и не склеивать данное легко деформируемое тело. Для того чтобы разделить сферу на два несвязанных кусочка, достаточно провести один замкнутый разрез, а сделать то же самое с тором можно, лишь произведя два разреза. Топологи просто обожают всякого рода экзотические конструкции типа плоского тора, рогатой сферы или бутылки Клейна, которые можно корректно изобразить только в пространстве с вдвое большим числом измерений. Так и нашу трехмерную Вселенную, замкнутую саму на себя, можно себе легко представить, только живя в шестимерном пространстве. На время космические топологи пока не покушаются, оставляя ему возможность просто линейно течь, ни на что не замыкаясь. Так что умения работать в пространстве семи измерений сегодня вполне достаточно для понимания того, как сложно устроена наша додекаэдрическая Вселенная.

Итоговая карта температуры реликтового излучения строится на основе кропотливого анализа карт, отображающих интенсивность радиоизлучения в пяти различных частотных диапазонах