Журнал «Домашняя лаборатория»
2006, №12
ДИСКУССИИ
Что происходит с современным НТП?
Чернов А.Ю.
(Журнал "Эко", 2006, № 5)
Рисунок Дюрера "Адам и Ева".
Вкусив плодов с "дерева познания добра и зла", человек неустанно старается познать мир и использовать свои знания порой для зла, порой для добра. Что же происходит с этим научно-техническим прогрессом в наши дни?
В статье проанализирована динамика важнейших направлений научно-технического прогресса за последние десятилетия в энергетике, на транспорте, в промышленности, электронике, микробиологии и других отраслях.
Сделан вывод о постепенном затухании темпов НТП и переходе от революционного к эволюционному типу развития. Рассмотрены отдельные мероприятия по активизации современного НТП, в частности, осуществление крупномасштабного перевода в электронную форму библиотечных фондов и других информационных баз для распространения по библиотечной сети страны с целью вовлечения в инновационный процесс широких слоев населения, повышения качества исследовательской и учебной деятельности.
Нашу жизнь сопровождают стереотипы. С некоторыми человечество время от времени расстается. По-видимому, настало время непредвзято посмотреть и на постулат о постоянном ускорении научно-технического прогресса, о захватывающих перспективах науки и техники ближайшего будущего, который для многих есть непреложная истина. Проведем обзор эволюции важнейших достижений науки и техники последних десятилетий.
Энергетика
В этой отрасли прогресс обеспечивается в основном ростом единичной мощности энергоустановок, повышением их КПД, освоением нетрадиционных источников энергии. Рост единичной мощности в электроэнергетике прекратился с середины 70-х годов (самая мощная паровая турбина пущена в 1973 г. в США на теплоэлектростанции (ТЭС) Амос-3; её мощность — 1,3 млн. кВт. Для сравнения: с 1900 г. до 1931 г. максимальная мощность паровых турбин возросла в 40 раз (с 5 тыс. кВт до 208 тыс. кВт), а с 1931 г. до 1973 г. — в 6,5 раза. КПД ТЭС с 1918 г. по 1939 г. вырос в 2 раза (КПД лучшей ТЭС, Стейт-Лайн, составил 27 %, к началу 1960-х годов этот показатель возрос у лучших ТЭС до 42 %, а к началу 70-х на парогазотурбинных ТЭС достиг 50 %. КПД угольных ТЭС сейчас не превышает 42–43 %, а лучшей комбинированной парогазотурбинной установки в Уэльсе — 60 %, то есть за 30 лет показатели повысились только на 10 %.
Среди нетрадиционных источников энергии самые многообещающие темпы роста в 60-80-е годы демонстрировали АЭС (в мире с 1965 г. по 1985 г. построен 431 реактор общей мощностью 353 млн. кВт), но после трагедии в Чернобыле все изменилось. По данным Минатома РФ, с 1986 г. по 2002 г. заложен всего 61 реактор общей мощностью 3 млн. кВт, в основном в странах, заинтересованных в раз витии своего военно-ядерного комплекса (Индия, КНР, Иран, Северная Корея, Тайвань), а также в Японии и Южной Корее.
После 1973 г., несмотря на четырехкратное (в сопоставимых ценах) повышение мировых цен на нефть и мощное финансирование соответствующих НИОКР, альтернативных новых конкурентоспособных источников энергии так и не появилось. Развивающиеся сейчас нетрадиционные энергоисточники базируются на давних технологиях: на энергии ветра — ветроэлектростанции (20-е годы XX в.) и ветряные мельницы (ХП в.); синтез углеводородов (время Второй мировой войны); солнечные элементы (фотоэлементы известны с 1888 г.); спирт, газ и растительное масло как моторное топливо (начало XX в).
Огромные надежды еще недавно возлагали на термоядерную энергию. Но исследования ведутся уже более 50 лет, затрачено свыше 30 млрд. дол., а сроки появления первых термоядерных электростанций все отодвигаются, так как преодолеть главную проблему — неустойчивость плазмы — никак не удается. В результате общественный интерес к термояду остыл, в США с 1980 г. сократили его финансирование на две трети. Последним оплотом остается многострадальный международный проект ИТЭР, обсуждаемый уже 20 лет. По последнему соглашению участники проекта должны построить к 2013 г. во Франции демонстрационный реактор мощностью 0,5 млн. кВт (стоимостью 13 млрд. дол.) с длительностью реакции 10 мин., который даст окончательный ответ на вопрос, есть или нет будущее у термоядерной энергетики.
Космонавтика
Самыми значительными результатами в исследовании космоса ознаменовались 15 лет после запуска в 1957 г. первого космического спутника. К 1972 г. интенсивность крупных космических достижений заметно снизилась. Наиболее значимые и дорогостоящие из них — корабли многоразового использования и долговременные орбитальные станции. Но первые оказались экономически неэффективными и постепенно заменяются одноразовыми ракетами, а из вторых — осталась только одна (МКС), развитие которой постоянно урезается. Коммерческое использование космоса не оправдало ожиданий, индустриализация Луны и планет остается пока уделом фантастики, а самое перспективное направление — космическая радиосвязь — «пала жертвой» прогресса в других отраслях техники. Многократное повышение надежности и снижение веса радиооборудования, а также развитие дешевых наземных оптико-волоконных линий связи резко сократили потребность в космических запусках: ежегодное число коммерческих космических запусков в мире сократилось с 30 в 1990-е годы до 11 — в 2001 г.
Транспорт
Важнейшими параметрами всегда были вместимость, скорость и экономичность транспортных средств. На морском флоте самое крупное судно построено в 1976 г. (танкер «Батиллус» вместимостью 600 тыс. т). за последующие 30 лет этот рекорд не был побит, в то время как за предыдущие 36 лет максимальные размеры судов возросли в 15 раз! Наивысшая скорость судов осталась практически неизменной со второй половины XX в.
Начиная с 1970 г. самым крупным самолетом, которым До последнего времени могла похвастать авиация, был «Боинг 747» (взлетный вес — 400 т, вместимость — 400 чел.). С 2006 г. начнут выпускать лайнер А-380 (взлетный вес — 560 т, вместимость — 555 чел.), но 1,5-кратный рост размеров за 36 лет — достижение очень скромное, если учесть, что за четыре предшествующих десятилетия размеры самолетов увеличились почти в шесть раз. Максимальная скорость полетов в гражданской авиации в последние годы сократилась в несколько раз в связи с прекращением эксплуатации сверхзвукового лайнера «Конкорд», созданного в начале 1970-х.
В автомобильном транспорте самосвал-рекордсмен 2004 г. модели Т282В имеет грузоподъемность всего на 4 % выше, чем рекордсмен 1977 г. — «Терик-Титан» (365 т против 350 т). Максимальная скорость серийно выпускаемых легковых автомобилей с 1966 г. по 2005 г. возросла на треть — с 300 км/час («Форд ГТ40») до 390 км/час (Koenigsegg CCR): в предыдущие 39 лет — в 1,5 раза (с 200 км/час у «Бугатти» — 41 в 1930 г.).
Рост экономичности транспортных средств наблюдается только в последние 30 лет и обусловлен энергетическим кризисом и резким ростом цен на топливо. У авиалайнеров удельный расход горючего за 30 последних лет снизился с 32 г/пасс. — км («Боинг 747–100») до 17 г/пасс. — км (Airbus А-320), что объясняется в основном применением новых суперсплавов в авиатурбинах.
В 20-40-е годы XX века низший расход топлива на 100 км на серийных автомобилях достигал 5–5,4 л («Ситроен 5CV» и 2CV); к началу 80-х годов снизился до 3,65 л («Рено 5TL»), а к 2000 г. — до 2,5 л («Фольксваген-Лупо», гибридные автомобили фирмы «Тойота»). При этом значения КПД двигателей внутреннего сгорания за последние 100 лет изменились незначительно. Первый работоспособный дизель, созданный в 1897 г., имел КПД 30 %, безкомпрессорный дизель Юнкерса конца 20-х — 38 %, самый эффективный современный дизель достиг КПД 44 %.
Промышленность
Одним из основных направлений технического прогресса в XIX–XX вв. было увеличение единичной мощности главных орудий производства. К середине 70-х годов XX в. процесс почти сошел на нет. С тех пор остаются непревзойденными единичные мощности домны (5 тыс. куб. м), кислородного конвертора (емкость 350 т), прокатного стана (с 1969 г. — стан 2000 Липецкого комбината мощностью 6 млн. т в год), карьерного экскаватора (1968 г., фирма Бюсайрус, емкость ковша — 168 куб. м, вес -12 тыс. т, гидравлических прессов (с 1967 г. в СССР на Новокузнецком металлургическом заводе, уел. 75 тыс. т) и т. д.