end
В отличие от интерфейса MCI, где многие параметры принимаются по умолчанию, интерфейс низкого уровня требует внимательного и тщательного учета всех деталей процесса записи и чтения. В качестве компенсации за дополнительно затраченные усилия вы получаете большую гибкость и возможность работать не только со звуком, но также и с произвольными сигналами в реальном времени.
Литература
1. Фролов А.В., Фролов Г.В. Мультимедиа для Windows. Руководство для программиста. — М,"ДИАЛОГ-МИФИ", 1994, 284 с. (Библиотека системного программиста; Т. 15).
Преобразование угла потенциометра в цифровой код
Шулейн
Разместив несколько байтов программы в микропроцессоре 8008/8080 и используя интегральный таймер типа 555, можно создать систему, преобразующую угол потенциометра в цифровой код. Указанный способ удобно и выгодно применять в тех случаях, когда информация о положении потенциометра поступает на вход системы, содержащей микропроцессор (системы управления производственными процессами, телевизионные игры и т. п.).
Как показано на рисунке, импульс строба микропроцессора запускает интегральный таймер 555, включенный по схеме ждущего мультивибратора. Временной интервал, соответствующий высокому потенциалу на выходе таймера, пропорционален сопротивлению потенциометра. Для измерения этого периода микропроцессор увеличивает содержимое внутреннего регистра до тех пор, пока потенциал интегрального таймера, поступающий на вход D7, остается высоким.
Когда необходимо ввести в микропроцессор информацию о положении потенциометра, программа обращается к подпрограмме POTPOS (положение потенциометра), в которой используются четыре флага, аккумулятор и регистр В. Как показано на рисунке, указанной подпрограмме соответствуют следующие операции микропроцессора:
1. Установить регистр В в 0.
2. Включить таймер 555.
3. Увеличить содержимое регистра В на 1.
4. Подать состояние ПС 555 на вход разряда D7 аккумулятора.
5. Установить минусовое значение знакового флага при отрицательном состоянии.
6. Вернуться к шагу три при отрицательном флаге.
7. Вернуться к основной программе, если флаг не отрицателен.
Перед возвращением к основной программе регистр В содержит число, пропорциональное длительности выходного импульса ИС 555 и, следовательно, соответствующее углу потенциометра.
При использовании программы и аппаратуры, описанных выше, применительно к микропроцессору с периодом тактовой частоты 2,5 мкс выходной код регистра В изменяется от 2 до 65 (в шестнадцатеричном коде), т. е. обеспечивает 100 дискретных значений во всем диапазоне регулировки потенциометра. Сопротивление потенциометра и емкость времязадающего конденсатора могут изменяться в зависимости от быстродействия используемого микропроцессора и заданного динамического диапазона.
Прецизионный измеритель перемещения
РАДИО № 5. 1986 г
Один из перспективных путей создания высокоточных приборов контроля перемещения — использование индуктивных преобразователей с цифровым отсчетом результата измерения. Известны индуктивные измерители линейного перемещения, в которых с целью повышения чувствительности использован фазочувствительный детектор на транзисторах. Такие преобразователи имеют повышенный коэффициент передачи только вблизи точки равновесия измерительного моста, а в остальной части измерительного интервала они сравнимы по чувствительности с традиционными устройствами.
Описаны устройства для контроля перемещения, в которых обмотки датчика включены в измерительный мост с балластными резисторами. Такие устройства без точной настройки и оптимизации режима работы не обеспечивают высокой точности и стабильности результатов измерения. Известны также частотные индуктивные преобразователи с обмотками, включенными в колебательный контур генератора высокой частоты. Частота выходного сигнала таких преобразователей пропорциональна измеряемому перемещению. Подобные устройства также не имеют преимуществ по чувствительности в сравнении с другими.
В Институте геотехнической механики АН УССР разработан и исследован простой индуктивный измеритель перемещения, обеспечивающий высокую чувствительность, точность и стабильность результатов измерения при изменении параметров его элементов. Индуктивный измеритель перемещения (см. схему на рис. 1). содержит преобразователь с дифференциальными обмотками L1, L2, кольцевой диодный детектор VD3-VD6, выходной индикатор Р1, генератор прямоугольного напряжения на транзисторах VT1, VT2 и трансформаторе Т1.
Параллельные цепи последовательно соединенных дифференциальных обмоток L1, L2, индуктивного датчика и конденсаторов C1, С2 измерительного моста включены в цепь положительной обратной связи генератора. Такое включение автоматически обеспечивает работу преобразователя перемещений в резонансном режиме, то есть когда индуктивное сопротивление скомпенсировано емкостным и полное сопротивление каждой цепи практически равно активному сопротивлению обмоток. Через измерительный мост протекает переменный ток, по форме близкий к синусоидальному, поскольку добротность контура весьма высока. Благодаря наличию диодов VD1, VD2 ток контура непосредственно протекает через эмиттерный переход открытого в соответствующий полупериод транзистора генератора. Второй транзистор в это время закрыт.
Генератор прямоугольных импульсов работает практически без нагрузки, поэтому при его запуске ток в контуре, начиная с первого же такта, достигает установившегося значения. Транзисторы работают без смещения, что обеспечивает их переключение вблизи момента перехода тока контура "через нуль", т. е. преобразователь работает в резонансном режиме, при котором чувствительность измерителя перемещения максимальна.
На рис. 2 схематически изображена конструкция собственно датчика измерителя. Катушки L1 и L2 размещены на двух Ш-образных элементах 2 магнитопровода, установленных с зазором. В зазоре между элементами размещен якорь 1, изготовленный в виде пластины из ферромагнитного материала, Якорь механически связывают коромыслом 3 с перемещающимся звеном контролируемого механизма.
Для определения вида математического выражения, определяющего выходной ток преобразователя In, проведены необходимые теоретические исследования, в результате которых получена следующая упрощенная формула:
In=(0,9∙Um/XL+ R)∙(A∙w∙Lo/(√(A∙w∙Lo)2 + r2)
где Um — амплитудное значение напряжения питания,
XL-индуктивное сопротивление одной катушки преобразователя,
R — сопротивление микроамперметра Р1;
A = dh/h — отношение смещения якоря к зазору между якорем и полюсом магнитопровода в исходном положении (см. рис. 2).
L() — индуктивность одной катушки при среднем положении якоря,
r — активное сопротивление одной катушки (r1 = r2);
w — угловая частота генератора.
Экспериментальные исследования преобразователя подтвердили достоверность полученного выражения. Для проверки работоспособности и технических характеристик индуктивности измерителя перемещения проведены лабораторные испытания нескольких макетных образцов в комплексе измерительной системы микробарометра. Установлено, что надежный запуск и устойчивая работа генератора обеспечиваются при напряжении источника питания 0,3 В и более при температуре в пределах от -5 до +50 °C. Работа измерителя при более низкой температуре не проверялась.