ax = logax (1)
на полуоси х > 0 при 0 < a < 1. Именно, нас интересует вопрос о том, при каких a количество решений равно трем.
Если ψ(х) = ах, то loga х = ψ-1(х), и наше уравнение (1) принимает вид ψ(х) = v-1(х), что равносильно ψ(ψ(х)) = x или
(2)
Для удобства дальнейшего введем новую переменную t = х∙In а и функцию
Тогда
(3)
и уравнение (2) превращается в
(4)
Найдем количество решений данного уравнения. Для этого прежде всего исследуем функцию F(t).
Поскольку исходная функция ψ(х) определена на интервале х > 0 и 0 < а < 1, то In а < 0 и t = х In а < 0, т. е. функция F(t) определена на интервале t € (—оо,0).
Асимптотики в предельных точках: limt->-ooF(t) = 0–0, limt->0–0F(t) = —oo. Т. е. функция F имеет горизонтальную и вертикальную асимптоты.
Далее,
Рис. 1: График функции F(t)
Для нахождения экстремумов функции F рассмотрим функцию φ(t) = tet и найдем корни уравнения φ(t) = 1/ln a. Видно, что на интервале t € (—оо,0) имеют место соотношения: limt->oo φ(t) = 0–0, φ(0) = 0. Далее, φ'(t) = et(t + 1), φ"(t) = et(t + 2) и вообще φ(n)(t) = et(t + n). Поэтому minimum функции φ находится в точке tmin — 1 и равен φmin = — e-1
Рис. 2: График функции φ(t) и определение положения точек t1, и t2.
Значит:
1) При 1/ln a <= — e-1 <=> a >= e-e экстремумов у функции F нет.
2) При а < е-e функция F имеет один minimum в точке t1, равный Fmin = aet1/t1 и один maximum в точке t2 > t1, равный Fmax = aet2/t2; при этом t1 < = tmin= -1 и t2 > tmin = -1.
Таким образом уравнение (4) имеет три решения только в случае 2) и лишь в том случае если
Fmin > 1/ln a < Fmax. (5)
При этом в случае 2) условие (5) является не только необходимым, но и достаточным для наличия у уравнения (4) трех решений. Точки t1 и t2 определяются условиями φ(t1) = t1et1 = φ(t2) = t2et2 = 1/ln a. Т. е. необходимое и достаточное условие наличия трех решений принимает вид
Левые части уравнений в условиях (6) не зависят от а, и потому эти уравнения имеют вид f(t) = g(a), в то время как неравенства (6) данным свойством не обладают (обе их части зависят от а), что неудобно. Выразим из первого уравнения et1= 1/t1lna и подставим это в соответствующее неравенство. Тогда получим
Аналогично, Fmax = e1/t2/t2. Тогда условия (6) превращаются в
Вспоминая определение функции φ, перепишем условия в форме:
Данные условия удобны тем, что левые части их не зависят уже от а (т. к. функция φ не зависит от а) и имеют вид f(t) = g(а) (т. е. переменные t и а разделены).
Рис. 3: Графики функций φ(t) (красный) и φ(1/t) (синий) и определение точек t1 и t2 (зеленая прямая — на уровне 1/ln a).
Проверку условий (9) проведем в два этапа: сначала докажем выполнение усиленного варианта второго из условий (9), а затем увидим, что первое условие (9) следует отсюда уже автоматически.
Поскольку точки t1 и t2 определяются как точки пересечения графика функции φ(t) с горизонтальной прямой на высоте 1/ln a, функция φ(t) имеет единственный minimum в точке tmin = —1, то ясно, что t1 < —1 < t2.
Покажем, что Vt € (—1,0) φ(1/t) > φ(t). Для этого рассмотрим функцию ξ(t) = φ(t)/φ(1/t) = t2еt — 1/t'. Ясно, что ξ(-1) = 1, а поскольку