Выбрать главу
 а значит,

Далее, имеем: λn+ = (х — 1 + 2i√x)n = (х + 1)neinφ, где φ = arctg (2√x/(x-1)). Поэтому

V1(n) = V1cos (n∙arctg (2√x/(x-1))).

Теперь мы в состоянии решить поставленную изначально физическую задачу. В самом деле, нам необходимо определить асимптотику числа соударений N легкого шара о тяжелый и стенку при условии х —> оо. Чем определяется это число N для любого конечного значения параметра х? Взаимодействие шаров можно представлять себе следующим образом: в начальный момент времени тяжелый шар движется к стенке со скоростью V1. При этом он сначала замедляется по мере того, как легкий шар отбирает у него энергию, затем тяжелый шар останавливается, и наконец, процесс идет в обратном направлении, т. е. легкий шар начинает отдавать обратно запасенную энергию, разгоняя таким образом тяжелый шар до его начальной скорости (поскольку потери энергии отсутствуют). Значит, если мы определим номер шага n, на котором выполняется условие

V1(n) = — V1

то число соударений N будет равно 2n (поскольку учитываются и соударения легкого шара со стенкой тоже, а соударения легкого шара с тяжелым шаром и со стенкой чередуются). Но условие (3) означает

При х —> оо дробь

поэтому, раскладывая арктангенс в окрестности нуля в ряд Тейлора, получаем:

Заменяя в последнем асимптотическом равенстве 2n на N и устремляя х к бесконечности, получаем:

N ~ π√x, х —> оо

что и требовалось.

Прибавление. На самом деле в решении есть лакуна. Конечное состояние системы, после последнего столкновения отвечает не обязательно нулевой скорости меньшего шара и скорости — V1 у большего. Такое конечное состояние соответствует случаю, когда последнее столкновение легкого шара происходит с тяжелым шаром, а не со стенкой, и необходимым условием выполнения условия (4) является кратность π числу arctg (2√x/(x-1)). Последнее же условие выполняется далеко не при любом х. В тех случаях, когда условие (4) не выполняется последнее столкновение легкий шар претерпевает со стенкой и катится затем в сторону тяжелого шара, но уже больше не догоняет его из-за того, что скорость его стала меньшей, чем у тяжелого шара. Таким образом максимально строгое условие, налагаемое на n будет:

|V1(n)| > |v2(n)|. (5)

Из выражения для V-> (n) найдем v2(n)

Поэтому условие (5) превращается в:

Первый вариант соответствует началу процесса, второй — его завершению. Поскольку arctg (1/√x) — бесконечно малая величина при x —> оо, то последнее условие переходит в (4), так что решение с этого места не меняется.

Попробуем разобраться в вопросе о происхождении приливных сил на Земле. Рассмотрим систему двух тел: Земля — Луна (Рис. 1).

Рис. 1

Обычно говорят, что приливные силы на Земле возникают в точках А и В и обусловлены неоднородностью гравитационного поля Луны на расстояниях порядка земного диаметра (примерно 12 000 км), и это верно. В самом деле, гравитационное ускорение, испытываемое единичной массой воды в точке А из-за силы притяжения Луны составляет fA = Gm/(r + R)2, где G — гравитационная постоянная, m — масса Луны, r — расстояние между центрами Земли и Луны, R — радиус Земли. Аналогичное ускорение, испытываемое водой в точке В, составит fB = Gm/(r — R)2 а ускорение самой Земли (которую мы полагаем твердым телом) будет между этими значениями: Gm/r2. Таким образом, разность гравитационных сил притяжения Луны, действующих на воду в точках А и В, как бы растягивает водную массу (как, впрочем, пытается растянуть и Землю) в стороны и отодрать ее от Земли, причем эта разность составляет

Сила же, отрывающая единичную массу воды в точках А и В от поверхности Земли, одинакова и по абсолютной величине составляет |fA — fB| = 2GRm/r3

Однако наряду с гравитационным эффектом есть еще и центробежный. Именно, известно, что система Земля — Луна в соответствии с законами Кеплера вращается вокруг центра масс (обозначенного нами точкой С), расположенного на расстоянии рE от центра Земли и рM — от центра Луны, причем рE = (m/(m + M))∙r, рM = (M/(m + M))∙r, а M/m = 81. При этом единичные массы воды, расположенные в точках А и В, имеют центростремительные ускорения аA = w2(pE + R), аB = w2(pE — R), в то время как Земля имеет среднее ускорение аO = w2pE. Значит, в неинерциальной системе отсчета, связанной с Землей, на эти массы воды будут действовать центробежные силы, также стремящиеся отодрать воду от Земли, растянуть всю систему, и их разность составит ΔаAB = 2w2R. Остается найти w2 и сравнить эффекты.