Нейтрино
История этой частицы началась 4 декабря 1930 года, когда великий Вольфганг Паули в письме участникам физического семинара в немецком городе Тюбингене с горечью написал: «Я сделал сегодня что-то ужасное. Физику-теоретику никогда не следует делать ничего подобного. Я ввел в теорию нечто, что никогда не сможет быть проверено экспериментально». Речь шла о гипотетической в то время частице, название для которой появилось только спустя два года. Крестным отцом стал итальянский физик Энрико Ферми. Он предложил назвать электрически нейтральную безмассовую частицу «маленькое нейтральное», или, по-итальянски, «neutrino». Паули же сокрушался потому, что в отчаянной попытке спасти закон сохранения энергии он был вынужден нарушить основополагающий научный принцип, предложенный в XIV веке Уильямом Оккамом: «Entia non sunt multiplicianda praeter necessitatern» («Сущности не следует умножать без необходимости»). Но у Паули не было другого выхода. Впрочем, давайте по порядку.
В 1914 году английский физик Джеймс Чедвик обнаружил, что электроны, испускаемые при Р-распаде атомных ядер, имеют непрерывный энергетический спектр. Другими словами, при измерении энергии электронов, родившихся в разных распадах, каждый раз получался разный результат. Суть р-распада состоит в том, что атомные ядра самопроизвольно испускают отрицательные электроны (е), при этом нейтрон превращается в протон и заряд ядра увеличивается на единицу: Z — > (Z+1) + е.
Предполагая, что распадающееся ядро находится в покое (то есть имеет нулевой импульс), и исходя из законов сохранения импульса и энергии, можно было ожидать, что образовавшееся при распаде ядро и электрон всегда вылетают в диаметрально противоположных направлениях с равным абсолютным значением импульса. Следовательно, энергия электрона всегда одна и та же. Эксперимент же показывал другое. Радикально мыслящий Нильс Бор предположил, что в p-распаде не соблюдается закон сохранения энергии. Более осторожный Паули предложил гипотезу, в соответствии с которой вместе с электроном из ядра вылетает еще одна частица, уносящая часть энергии. Экспериментаторы не видят ее, поскольку она электрически нейтральна и очень слабо взаимодействует с веществом. Ее-то и окрестили нейтрино v.
Закон сохранения энергии оказался спасенным, но взамен пришлось мириться с существованием гипотетической слабовзаимодействующей частицы, которую никто не надеялся обнаружить экспериментально. Однако уже через 26 лет предположение Паули подтвердилось. В экспериментах на атомных реакторах, проведенных в 1953–1956 годах, группа американского физика Фредерика Рейнеса надежно зарегистрировала нейтрино.
Вселенная наполнена нейтрино. На каждый нуклон их приходится около миллиарда. Вероятность взаимодействия с веществом для них чрезвычайно мала — почти все нейтрино, рожденные в центре Солнца, проходят до его поверхности и затем сквозь Землю, не испытывая взаимодействия. Поэтому эксперименты по обнаружению нейтрино очень сложны.
С одной стороны, нейтрино почти не определяют свойств нашего мира. С другой стороны, именно эти частицы несут информацию, которую другим путем получить невозможно. Протоны электрически заряжены, траекторию их полета искривляют галактические и межгалактические магнитные поля; в результате невозможно определить объект, в котором они были ускорены. Нейтроны в свободном состоянии подвержены распаду и «не доживают» до Земли, если рождены в удаленных объектах. Хотя у-кванты стабильны и нейтральны, их поглощает межзвездная среда. Только стабильные, электрически нейтральные и слабовзаимодействующие нейтрино проходят расстояния в миллиарды световых лет или пробиваются из ядра Солнца, не изменяя своих свойств и храня информацию о физических условиях, в которых они образовались. Загадка происхождения космических лучей сверхвысоких энергий, подтверждение модели взрыва сверхновых звезд, изучение механизма термоядерного горения в ядре Солнца — эти и многие другие физические проблемы решены или решаются именно посредством детектирования нейтрино в сложнейших экспериментах. Рассказ об этих экспериментах и о том, что физики узнали и еще надеются узнать с их помощью, — в следующих статьях нашего цикла.