2. Транспортировка нейромедиатора. Наркотик вмешивается в процесс доставки молекул нейромедиатора к нервным окончаниям.
3. Накопление нейромедиатора. Наркотик вмешивается в процесс накопления нейромедиатора в пузырьках нервных окончаний
4. Выделение нейромедиатора. Наркотик вызывает преждевременное выделение молекул нейромедиатора в синапс.
5. Распад нейромедиатора. Наркотик влияет на распад нейромедиатора посредством ферментов.
6. Обратное поглощение нейромедиатора. Наркотик блокирует обратное поглощение нейромедиатора в нервные окончания.
7. Активизация рецептора. Наркотик активизирует рецептор благодаря мимикрии.
8. Блокировка рецептора. Наркотик делает рецептор инертным, блокируя его.
Помимо мимикрии, наркотики могут влиять на передачу нервных импульсов еще многими способами. Модели механизмов этого влияния приведены в таблице 3–1. Нейромедиаторы вырабатываются из менее сложных соединений, так называемых "исходных молекул". Выработка медиаторов обычно происходит в клеточном теле или нервных окончаниях, и если этот процесс идет в клеточном теле, то прежде чем медиатор может заработать, его надо еще переправить в нервное окончание. Некоторые наркотики вмешиваются в производство или доставку медиатора. Молекулы нейромедиатора накапливаются в маленьких емкостях (пузырьках) по краям нервных окончаний. Некоторые наркотики влияют на способность пузырьков накапливать нужные вещества. Например, под воздействием наркотика резерпина, который одно время использовался для лечения высокого давления, в пузырьках появляется течь, и содержащиеся в них нейромедиаторы не могут вовремя попасть в синапс в нужном количестве. Другие наркотики оказывают противоположное действие, увеличивая поступление медиаторов в синапс. Так действуют стимуляторы, например, амфетамины.
Другая важная особенность передачи нервных импульсов состоит в том, что после выделения нейромедиаторы должны быть дезактивированы. Нейрон можно сравнить с перезаряжаемой электрической батареей: после возбуждения ему необходима перезарядка. Но она начинается после того, как ключи вынуты из замков. Дезактивация нейромедиатора может проходить двумя способами: ферментацией (разрушением ферментами) и обратным поглощением. Ферменты — особые соединения, ответственные как за выработку нейромедиаторов, так и за их разрушение до состояния инертных веществ. Это очень сложные процессы. В мозговой ткани находится много химических веществ, и они постоянно меняют свою структуру. Рассмотрим, как происходит производство и разрушение ацетилхолина, одного из самых важных нейромедиаторов. Для его получения фермент ацетилтрансфераза реагирует с "исходной" молекулой холина. В результате разрушения ацетилхолина, для чего необходим другой фермент — ацетилхолинэстераза, образуются два метаболита холин и ацетат. (В названиях ферментов обязательно содержатся корни названий веществ, с которыми фермент реагирует, а также окончание — аза.) Наркотик может вмешиваться в процесс передачи импульса, влияя на фермент. Например, некоторые антидепрессанты мешают дезактивации нейромедиаторов норадреналина, дофамина и серотонина, ослабляя действие моноамин-оксидазы, фермента, разрушающего данные соединения.
Второй путь удаления нейромедиаторов из синапса — обратное поглощение. Нейромедиаторы возвращаются обратно в нервное окончание, из которого они были выделены. Такой процесс дезактивации экономичнее, поскольку молекула нейромедиатора остается неповрежденной и ее можно использовать снова, не затрачивая энергию на выработку новых. Некоторые наркотики (особенно кокаин и амфетамины) оказывают одно из своих действий, блокируя этот процесс.
Таблица 3–2. Нейромедиаторы, их протагонисты и антагонисты
Нейромедиатор ∙ Протагонист ∙ Антагонист
Ацетилхолин ∙ Никотин ∙ Атропин
Дофамин/норадреналин ∙ Кокаин/амфетамины ∙ Хлорпромазин
Серотонин ∙ LSD ∙ Хлорпромазин
Эндорфины ∙ Морфий ∙ Налоксон
Гаммааминомасляная кислота (GABA) ∙ Барбитурат ∙ Бикукулин
Последняя группа действий наркотиков — непосредственно на рецептор. Некоторые наркотики воздействуют на рецептор, выдавая себя за настоящий нейромедиатор (эдакий дубликат ключа, подходящий к замку). Другие наркотики заклинивают замок и препятствуют возбуждению нейрона. Они называются блокировщиками. Вообще, любые вещества, эндогенные или нет, которые подходят к замку рецептора и активизируют нейрон, называются протагонистами этого рецептора. Любое соединение, которое не активизирует нейрон само и мешает сделать это другим веществам, называется антагонистом. Например, налоксон — антагонист рецепторов, на которые влияют опиаты типа героина. Если дать налоксон человеку, только что принявшему смертельную дозу героина, то он не только не умрет, но даже придет в такое состояние, словно и не принимал наркотик.
Вообще, налоксон полностью блокирует и аннулирует все воздействие героина и других опиатов. Поэтому налоксон называется антагонистом опиатов. Следует запомнить, что хотя наркотики взаимодействуют с мозговой тканью очень по-разному, в механизме этого взаимодействия всегда содержатся процессы, характерные для нормального функционирования организма. Наркотик активизирует или замедляет функционирование некоторых частей мозга с определенными естественными функциями. Различия в действии разных наркотиков можно объяснить, изучив, на какие нейромедиаторы они влияют и как именно. Поэтому необходимо рассмотреть нейромедиаторные системы человеческого мозга и некоторые известные их функции.
Главные нейромедиаторные системы
Ацетилхолин
Из всех нейромедиаторов одним из первых был открыт ацетилхолин, воз можно, потому, что он находится в наиболее удобных для изучения нейронах, расположенных за пределами мозга. Он содержится в окончаниях нейронов, управляющих мышцами скелета. В местах соединения нервов с мышцами есть пространство, подобное синапсу, которое называется нейромускулярным соединением. Когда нейроны, соединенные с мышечными волокнами, возбуждаются, они выделяют в область нейромускулярного соединения ацетилхолин, и мышцы сокращаются. Ацетилхолин также играет важную роль в мозге, но подобно большинству других нейромедиаторов его функции до конца не изучены. Все же известно, что он является важным регулятором ощущения жажды. При образовании прилагательных от нейромедиатора просто берется корень слова /в данном случае холин/ и к нему прибавляется суффикс "ергический". Так, жажду мы назовем холинергической функцией, содержащие ацетилхолин нейроны — холинергическими нейронами, а наркотики, блокирующие ацетилхолин — антихолинергическими наркотиками. Предположительно, ацетилхолин также является важным элементом системы памяти. Есть доказательства того, что болезнь Альцгеймера — прогрессирующая потеря памяти в старческом возрасте — связана с нарушением функционирования нейронов на одном из холинергических участков. Самые современные исследования болезни Альцгеймера направлены на определение характера повреждения этих участков и разработку способов лечения или предотвращения этих повреждений. В 1993 году комиссия Парка-Дэвиса объявила о том, что получен и официально утвержден первый препарат для лечения болезни Альцгеймера такрин (Содпех), увеличивающий уровень ацетилхолина в мозговой ткани. Исследования болезни Альцгеймера дали новые доказательства в пользу того, что причиной психических заболеваний является нарушение нормального функционирования нейромедиаторов.
Моноамины
Моноаминами называются три важных нейромедиатора, входящих в одну аминогруппу, — норепинефрин (норадреналин), дофамин и серотонин. Как и ацетилхолин, норадреналин был открыт давно, потому что он тоже находится за пределами мозга. Это главное химическое вещество, регулирующее физические изменения, сопровождающие эмоциональный подъем. Он также содержится в мозге и играет роль нейромедиатора, ответственного за чувство голода, бодрствование и пробуждение от сна. Серотонин находится во всех частях мозга и играет важную роль в регулировании сна. Дофамин — главный нейромедиатор на участках мозга, обеспечивающих согласованные движения частей тела. Это открытие породило гипотезу, что недостаток дофамина может быть главной причиной болезни Паркинсона, которая поражает в основном пожилых людей и характеризуется прогрессирующей несогласованностью движений, отвердением мускулатуры и дрожью в теле. В соответствии с этой гипотезой стали применять новые подходы к лечению болезни Паркинсона, в том числе прием препарата L-дофа, "исходного вещества" дофамина. L-дофа назначался пациентам для восстановления уровня содержания дофамина в тканях, и дал потрясающие результаты. Прием самого дофамина неэффективен, так как он не может попасть в мозг вместе с кровью. Мозг защищен от попадания токсичных веществ системой фильтрации крови или кровяным барьером мозга (энцефалогенный барьер), которая задерживает и дофамин. Но L-дофа преодолевает этот барьер и, попадая в мозг, превращается в до фамин. Использование L-дофа при лечении болезни Паркинсона — яркий пример ценности научных исследований нейромедиаторов. Хотя L-дофа не избавляет от болезни совсем (потеря дофаминергических нейронов продолжается, и даже этот препарат не может полностью ее восполнить), он продлевает жизнь людям, страдающим болезнью Паркинсона, которые без него умерли бы на много лет раньше.