Выбрать главу

***

Русская служба ВВС опубликовала интересный комментарий профессора физики Университетского колледжа Лондона Рубена Саакяна (http://www.bbc.com/russian/science/2016/02/160212_5floor_gravitational_waves_discovery ):

«Один из очень принципиальных моментов этого открытия – это то, что мы впервые получили способ изучать, наверное, самые интересные объекты в нашей Вселенной – черные дыры. У нас по большому счету не было серьезного инструментария, чтобы смотреть на эти самые интересные объекты, которые нам могут много чего еще рассказать, в том числе о возможности путешествия во времени, в параллельной Вселенной и прочее. Это совершенно сумасшедшие объекты – черные дыры, но изучать их очень трудно. Гравитационные волны дают нам такую возможность.

Мы надеемся, что со временем гравитационные волны станут нашим стандартным инструментарием, и мы сумеем заглянуть внутрь черных дыр. Другого способа, скорее всего, нет. То, что мы сейчас сумели зарегистрировать, дает нам надежду, что у нас будет способ заглянуть в эту воронку.

Есть очень популярная теория, что наша Вселенная – это одна из многих, многих, многих вселенных. В этих моделях черные дыры могут быть тем самым тоннелем, который позволяет путешествовать от одной вселенной к другой.

Это кажется научной фантастикой, но на самом деле это вполне возможно: мы сумеем на эти вещи начинать не то что отвечать, но, по крайней мере, заглядывать туда. В этом плане объявление о регистрации гравитационных волн для меня лично более даже важно – не очередное подтверждение теории относительности, что, конечно, очень важно, а тот инструментарий, который новое открытие нам дает для изучения этих объектов…

Когда свет из далекой звезды доходит до нас, до Земли, проходя мимо очень массивного объекта, такого как, например, черная дыра, он искривляется. Искривление можно посчитать с помощью уравнений общей теории относительности. Мы получили сейчас еще одно подтверждение, что эти уравнения действительно можно использовать. Связь, безусловно, есть.

Любое фундаментальное естественно-научное открытие приводило нас к технологическим прорывам. Примеров можно сколько угодно. Когда Эйнштейн написал свое уравнение специальной теории относительности о замедлении времени и прочем, практического применения не было видно никакого. Не прошло и ста лет, как оно появляется.

Другой пример – это Фарадей, который показывал свои опыты электромагнитной индукции в середине XIX века. Когда его спросили, зачем это нужно, он сказал, это ни зачем не нужно, это фундаментальная наука. Сейчас любой наш двигатель, электромотор работает на этом принципе.

Есть две вещи. Есть сами гравитационные волны. Может быть, мы научимся сквозь черные дыры в другую Вселенную переходить. Есть технология, которая развивается для того, чтобы их зарегистрировать, допустим, лазеры, которые были использованы. Это, конечно, может использоваться в ближайшем времени».

Что дальше?

Перспективы гравитационно-волновой астрономии – самые воодушевляющие. Сейчас завершился лишь первый, самый короткий наблюдательный сеанс детектора LIGO, и уже за это короткое время был пойман четкий сигнал. По мере увеличения чувствительности детекторов и расширения доступной для гравитационно-волновых наблюдений части Вселенной, количество зарегистрированных событий будет расти лавинообразно.

В конце 2016 года в игру вступит обновленная итальянская лаборатория Virgo. У нее чувствительность чуть поменьше, чем у LIGO, но за счет метода триангуляции тройка разнесенных в пространстве детекторов позволит намного лучше восстанавливать положение источников на небесной сфере. Если сейчас, с двумя детекторами, область локализации достигает сотен квадратных градусов, то три детектора позволят уменьшить ее до десятков. Кроме того, в Японии сейчас строится аналогичная гравитационно-волновая антенна KAGRA, которая начнет работу через два-три года, а в Индии в 2022 году планируется запустить детектор LIGO-India. В результате спустя несколько лет будет работать и регулярно регистрировать сигналы целая сеть гравитационно-волновых детекторов.