Рис. 3. Сеть нынешних и будущих гравитационно-волновых детекторов. Изображение с пресс-конферении 11 февраля.
Поиском новых источников гравитационных волн занялись ученые многих стран. Об этом сообщило РИА Новости http://ria.ru/space/20160217/1376086384.html#ixzz41IykYVQJ .
Китай будет изучать гравитационные волны вместе с Европейским космическим агентством (ESA). Как заявил член академии наук Китая У Юэлян, академия подготовила проект по изучению гравитационных волн, получивший название «Тайцзи». По его словам, план проекта будет завершен позднее в этом году. «Гравитационные волны можно разделить на три типа в соответствии с их частотой. Низкочастотные гравитационные волны могут иметь больше источников, чем остальные два типа… Но эти источники еще предстоит обнаружить, и мы к этому стремимся», – сказал он.
Проект китайских ученых включает два этапа. Первый: совместное участие в проекте eLISA (Laser Interferometer Space Antenna) Европейского космического агентства. Второй: запуск группы спутников, которые должны подтвердить информацию, если ее удастся получить в рамках eLISA.
Как сказал китайский физик Ху Вэньжуй, eLISA сможет проводить больше исследований гравитационных волн, чем LIGO, так как исследования будут проводиться в космосе, а не с Земли. eLISA подразумевает размещение в космическом пространстве трех спутников, которые образуют треугольник и станут обмениваться между собой лазерными лучами.
Открытие гравитационных волн не было единственным важным открытием 2015 года. Другое интересное достижение тоже связано с теорией тяготения. О нем рассказывает научный журналист Марат Мусин на сайте «Элементы».
«В 2014 году в далекой галактике была обнаружена сверхновая, свет от которой дошел до нас через так называемую гравитационную линзу
http://nature.web.ru/db/msg.html?mid=1157494
(в роли линзы выступило скопление галактик), которая учетверила изображение звезды, преобразовав его в «крест Эйнштейна». Расчеты, основанные на моделях распределения массы в скоплении и на Общей теории относительности, предсказали, что часть света взорвавшейся звезды, отклонившись под действием гравитации, достигнет Земли примерно через год. Ученые уже знали, когда и где ждать нового появления этой сверхновой, и их предсказания подтвердились с впечатляющей точностью.
10 ноября 2014 года телескоп «Хаббл» зарегистрировал сверхновую, которая взорвалась 9,3 миллиарда лет назад. По пути к нам свет от нее прошел через крупное скопление галактик MACS J1149.5+2223 и был усилен и искажен из-за эффекта гравитационного линзирования: отклонения света под действием гравитации массивных тел. Линзой послужила самая большая из галактик скопления, и по счастливой случайности она породила сразу четыре изображения этой сверхновой. Такое явление называют крестом Эйнштейна.
Гравитационные линзы, подобно кривым зеркалам, могут создавать весьма причудливые изображения далеких источников: двойные, тройные, четверные изображения, арки, кольца и даже двойные кольца.
Рис. 4. Фрагмент обзора скопления галактик MACS J1149.5+2223, полученный телескопом «Хаббл» в конце 2014 года. Большим кружком обозначено место, на котором 11 декабря 2015 года появилось предсказанное изображение сверхновой Рефсдаля. Маленькими кружками обведены изображения этой сверхновой, обнаруженные в 2014 году.
Это первый крест Эйнштейна, образованный сверхновой (классический крест Эйнштейна был получен от квазара). Астрономы давно надеялись на появление такой сверхновой, потому что множественные изображения объекта, который по космическим меркам быстро меняет свою яркость, позволяют очень точно определить, как обычное вещество (пыль, газ, звезды) и темное вещество распределены по скоплению.
Сверхновая получила свое название в честь норвежского астрофизика Шура Рефсдаля, который занимался изучением гравитационного линзирования. Спустя всего две недели после обнаружения сверхновой Рефсдаля японский ученый Масамуне Огури опубликовал статью, в которой предсказывал повторное появление сверхновой примерно через год. Его расчеты показали, что в конце 2015 года на небе должно возникнуть еще одно изображение этой сверхновой. Огури также вычислил, что самый первый свет от сверхновой Рефсдаля должен был дойти до нас еще в 1997 году (то есть всего нам должно было быть видно шесть ее изображений: одно, самое раннее, в 1997 году, четыре в 2014 году и одно в 2015-м). К сожалению, ни один телескоп, который мог бы зафиксировать первое появление сверхновой, не вел тогда наблюдений в этой области неба, и это предсказание Огури осталось неподтвержденным.