Выбрать главу

И все же, несмотря на свою простоту, она ведет себя принципиально иначе, чем все другие известные формы энергии.

Каждая форма материи и излучения во Вселенной каким-то образом связана с квантовыми частицами. Нормальная материя состоит из субатомных частиц, которых существует конечное число. По мере расширения Вселенной количество частиц остается неизменным, а объем увеличивается, следовательно, вещество становится менее плотным с течением времени. Точно так же и излучение квантуется в частицы (даже, теоретически, гравитационное излучение, которое должно квантоваться в гравитоны), но эти частицы безмассовые. По мере расширения Вселенной не только количество частиц остается неизменным при увеличении объема, но и энергия каждой отдельной частицы уменьшается.

Тем не менее, оба этих описания не подходят для темной энергии. По мере увеличения объема Вселенной плотность энергии не меняется; она остается постоянна. Как будто во всем пространстве присутствует что-то, не зависящее от чего-либо еще: плотности материи, плотности излучения, температуры, изменения объема и т. д. Хотя мы можем измерить и количественно оценить темную энергию и ее влияние на Вселенную, мы не можем сказать, что мы понимаем ее природу. Это могло быть

∙ частица какого-то типа,

∙ поле, пронизывающее вселенную,

∙ или даже свойство, присущее самой ткани пространства.

Если темная энергия - это частица, то либо должны постоянно создаваться новые частицы, чтобы поддерживать постоянную плотность энергии, либо поведение этих частиц должно со временем эволюционировать, чтобы их влияние на Вселенную оставалось постоянным.

Если темная энергия - это поле, пронизывающее Вселенную, нет никаких доказательств того, что темная энергия - это что-то иное, кроме самой простой сущности, которую только можно вообразить: свойство, которое неизменно присуще пространству везде и всегда. Как это возможно?

1. Вселенная может иметь положительную, ненулевую космологическую постоянную, термин из общей теории относительности. Постоянная должна быть очень, очень маленькой, но, когда вы помещаете ее повсюду по всей Вселенной, она в конечном итоге начинает доминировать.

2. Это может быть квантовое свойство пространства: энергия нулевой точки всех полей в космическом вакууме не обязательно должна быть равна нулю, но может принимать какое-то положительное значение. То, что мы часто интерпретируем как квантовые флуктуации или возникающие и исчезающие пары частица-античастица, может быть причиной темной энергии.

С теоретической точки зрения важно иметь в виду, что до тех пор, пока мы не поймем природу темной энергии, мы должны держать все эти варианты в уме. Темная энергия может быть связана с инфляционной эпохой, которая положила начало Большому взрыву; темная энергия могла быть важной и действенной на раннем этапе истории Вселенной, прежде чем перейти в ее нынешнее состояние с низкой плотностью; темная энергия может быть медленно эволюционирующей или неоднородной, или может иметь немного более высокую или более низкую плотность в зависимости от того, что еще есть вокруг. Теоретически все варианты остаются на столе. Но именно поэтому мы не основываем наши выводы только на теории.

Вся идея науки основана на представлении о том, что мы узнаем информацию о Вселенной, проверяя саму Вселенную посредством измерений, экспериментов и наблюдений. По мере изучения:

∙ космического микроволнового фона до все меньших и меньших масштабов, в большем количестве диапазонов длин волн и с учетом поляризации;

∙ крупномасштабной структуры Вселенной на больших расстояниях, более слабых объектов и больших областей на небе;

∙ и индивидуально светящихся объектов, с большей точностью и на больших расстояниях.

Изучая все это, мы получаем возможность видеть, есть ли какие-либо указания на то, что темная энергия является чем-то другим, кроме чистой константы, и показывает ли она доказательства какой-либо эволюции или неоднородностей во времени и/или пространстве.

Пятнадцать лет назад мы смогли ограничить постоянство темной энергии с точностью ╠ 30 процентов. Сегодня точность этого показателя увеличилась до ╠ 7 процентов. С появлением следующего поколения космических и наземных обсерваторий точность достигнет ╠ 1 процента. Если есть какие-либо неоднородности или эволюционные эффекты, которые происходят в темной энергии, предстоящие исследования смогут этто выявить.