Выбрать главу

"WISPR протестирован для наблюдений в видимом свете. Мы ожидали увидеть облака, но камера смотрела прямо на поверхность", - пояснил Ангелос Вурлидас, научный сотрудник проекта WISPR из Лаборатории прикладной физики Джонса Хопкинса (APL).

Полученные фотографии стали неожиданностью для исследователей, которые не ожидали, что WISPR так четко увидит объекты на поверхности Венеры. Возникает интересный вопрос для инженеров и астрономов: почему WISPR смог так ясно видеть сквозь облака Венеры? Две наиболее вероятные возможности: либо WISPR способен видеть в инфракрасном диапазоне длин волн лучше, чем предполагали разработчики, либо существует более тонкая область облаков, позволяющая камере видеть сквозь дымку. Любая причина предлагает захватывающие новые научные возможности. Если WISPR может эффективно отображать инфракрасные волны, то у нас есть новый инструмент для изучения пыли и гальки, подобных тем, которые сформировали каменистые планеты внутренней Солнечной системы. Если в облаках Венеры есть ранее неизвестные разрывы, эта особенность может помочь лучше понять атмосферу Венеры.

WISPR изучает Венеру вместе с командой, управляющей аппаратом японской миссии Акацуки, вращающимся вокруг Венеры. Этот космический аппарат снимает Венеру в инфракрасном диапазоне, создавая изображения, похожие на неожиданные фотографии, сделанные зондом Parker.

Второй набор изображений ночной стороны Венеры был сделан командой WISPR 20 февраля 2021 года. Анализ этих изображений должен быть завершен к апрелю.

***

Опубликовано в журнале Live Science.

Новое состояние материи

Рис 2

"Косяк рыб, рой насекомых, летают птицы... Новое исследование показывает, что на самом базовом уровне такое групповое поведение формирует новый вид активной материи, называемый вихревым состоянием. Физические законы, такие как второй закон Ньютона, который гласит, что по мере увеличения силы, приложенной к объекту, его ускорение увеличивается, а по мере увеличения массы объекта его ускорение уменьшается, применяются к пассивной, неживой материи, от атомов до планет. Но большая часть материи в мире активна и движется под действием собственной, самонаправляемой силы".

Так сказал Николай Бриллиантов, математик из Сколковского института науки и технологий в России и Университета Лестера в Англии. Такие разнообразные живые существа, как бактерии, птицы и люди, могут взаимодействовать с действующими на них силами. Есть и примеры неживой активной материи. Наночастицы, известные как "частицы Януса", состоят из двух сторон с разными химическими свойствами. Взаимодействие между сторонами создает движение.

Чтобы исследовать активную материю, Бриллиантов и его коллеги использовали компьютер для моделирования частиц, которые могут самостоятельно двигаться.

"Эти частицы сознательно не взаимодействуют с окружающей средой, - сказал Бриллиантов. - Они больше похожи на простые бактерии или наночастицы с внутренними источниками энергии, но без способностей к обработке информации".

Первым сюрпризом было то, что эта активная материя ведет себя совсем не так, как пассивная. По словам Бриллиантова, разные состояния пассивной материи могут сосуществовать. Например, стакан жидкой воды может постепенно испаряться, но при этом остается жидкая вода. Активная материя, напротив, не сосуществовует в разных фазах; она или твердая, или жидкая, или газообразная.

Частицы также группируются в большие конгломераты или квазичастицы, которые образуют круговой узор вокруг центральной пустоты, что-то вроде водоворота стайных сардин. Исследователи назвали эти конгломераты частиц "вихревыми", а новое состояние вещества - "вихревым состоянием". В этом вихревом состоянии частицы проявляли странное поведение. Например, они нарушили второй закон Ньютона: когда к ним прикладывали силу, они не ускорялись. "Они просто движутся с постоянной скоростью, что совершенно удивительно", - сказал Бриллиантов. По его словам, моделирование было лишь началом, и экспериментальная работа с реальным активным веществом - важный следующий шаг. Бриллиантов и его коллеги планируют провести более сложное моделирование с использованием частиц активного вещества, способных обрабатывать информацию. Такие частицы будут больше напоминать насекомых и животных и помогут раскрыть физические законы, регулирующие возникновение стай и роение. По словам Бриллиантова, в конечном итоге цель состоит в том, чтобы создать самособирающиеся материалы из активного вещества, что важно для понимания фаз этого вида материи. "Очень важно, что мы видим природу активной материи, которая намного богаче, чем природа пассивной материи", - сказал Бриллиантов.