Выбрать главу

- и, наконец, обе щели снова закрываются.

Как меняется узор?

Как и следовало ожидать:

- вы видите узор с одной щелью (без помех), если открыта только одна щель,

- двухщелевой (интерференционный) рисунок, если обе щели открыты,

- и гибрид двух вариантов.

Когда оба пути доступны одновременно, без ограничений, вы получаете интерференцию и волнообразное поведение. Но если у вас есть только один доступный путь или если какой-то путь каким-то образом ограничен, вы получите поведение, подобное частицам.

Итак, мы возвращаемся к тому, что обе щели находятся в "открытом" положении, и освещаем обе, когда пропускаем электроны по одному через двойные щели.

Если свет является одновременно энергетическим (высокая энергия каждого фотона) и интенсивным (большое количество фотонов), вы вообще не получите интерференционной картины. 100% ваших электронов будут измеряться на самих щелях, и вы получите результаты, которые ожидаете только от классических частиц.

Но если вы снизите энергию на фотон, вы обнаружите, что, когда вы опускаетесь ниже определенного энергетического порога, свет не взаимодействует с каждым электроном. Некоторые электроны пройдут через щели, не регистрируясь, через какую щель они прошли, и вы начнете возвращать интерференционную картину, когда снизите энергию фотонов.

То же самое и с интенсивностью: когда вы ее понижаете, узор "два ворса" медленно исчезает, сменяясь узором интерференции, а если увеличиваете интенсивность, все следы интерференции исчезают.

И тогда у вас появляется блестящая идея использовать фотоны, чтобы измерить, через какую щель проходит каждый электрон, но уничтожить эту информацию, прежде чем смотреть на экран.

Эта идея известна как эксперимент с квантовым ластиком, и он дает удивительный результат: если вы уничтожите информацию в достаточной степени, даже после измерения, через какую щель прошли частицы, вы увидите на экране интерференционный узор.

Каким-то образом природа знает, есть ли у нас информация, которая "отмечает" прорезь, через которую прошла квантовая частица. Если частица каким-либо образом помечена, вы не получите интерференционной картины, когда посмотрите на экран; если частица не помечена (или была измерена, а затем снята с пометки, уничтожив ее информацию), вы получите картину интерференции.

Мы даже пытались провести эксперимент с квантовыми частицами, квантовое состояние которых было "сжато", чтобы быть более узким, чем нормальное, и они не только демонстрируют ту же квантовую странность, но и получаемая интерференционная картина также сжимается по сравнению со стандартным двойным щелевым узором.

В свете всей этой информации очень соблазнительно задаться вопросом, о чем спрашивали тысячи и тысячи ученых и студентов-физиков: что все это говорит о природе реальности?

Означает ли это, что природа по своей сути недетерминирована?

Означает ли это, что то, что мы сохраняем или разрушаем сегодня, может повлиять на исход событий, которые уже должны были быть определены в прошлом?

Что наблюдатель играет фундаментальную роль в определении того, что реально?

Ответ, к сожалению, заключается в том, что мы не можем сделать вывод, является ли природа детерминированной или нет, локальной или нелокальной, или реальна ли волновая функция. Эксперимент с двойной прорезью показывает настолько полное описание реальности, насколько вы когда-либо собираетесь получить. Знать результаты любого эксперимента, который мы можем провести, - это настолько далекая перспектива, насколько нам позволяет физика. Остальное - всего лишь интерпретация.

Если ваша интерпретация квантовой физики может успешно объяснить то, что нам показывают эксперименты, значит, все остальные недействительны. Все остальное - эстетика, и хотя люди могут спорить о своей любимой интерпретации, никто не может претендовать на то, что она "настоящая" больше, чем любая другая. Но в этих экспериментальных результатах можно найти суть квантовой физики. Мы навязываем Вселенной свои предпочтения на свой страх и риск. Единственный путь к пониманию - это прислушиваться к тому, что Вселенная говорит нам о себе.

***

Тим Андерсен, доктор философии

Стрела времени: возможно, мы сможем вспомнить будущее

Я наливаю воду в кружку и ставлю кружку в микроволновую печь. Чтобы довести до кипения, требуется две минуты при высокой температуре. Микроволновая печь издает звуковой сигнал, и я бросаю чайный пакетик, конечно же "Эрл Грей", прислушиваясь к звукам пузырей.