Выбрать главу

***

О том, что представляет собой излучение Хокинга, интересно рассказывает другой выдающийся физик и популяризатор науки Брайан Грин в книге «Скрытая реальность, параллельные миры и глубинные законы космоса». В Интернете с этим текстом можно ознакомиться на сайте https://www.e-reading.club/chapter.php/1040302/101/Grin_-_Skrytaya_realnost._Parallelnye_miry_i_glubinnye_zakony_kosmosa.htmclass="underline"

«Поскольку квантовая механика не играет никакой роли в общей теории относительности Эйнштейна, решение Шварцшильда для черных дыр основывается исключительно на классической физике. Однако надлежащее рассмотрение вещества и излучения – таких частиц, как фотоны, нейтрино и электроны, которые могут переносить массу, энергию и энтропию из одного места в другое – требует привлечения квантовой механики. Чтобы в полной мере оценить природу черных дыр и разобраться, как они взаимодействуют с веществом и излучением, необходимо продлить решение Шварцшильда в квантовую область. Это нелегко. Несмотря на достижения теории струн (а также других подходов, которых мы не коснулись, таких как петлевая квантовая гравитация, твисторы, теория топосов), мы по-прежнему находимся на начальном уровне в наших попытках совместить квантовую физику и теорию гравитации. А в далеких 1970-х было еще меньше теоретических оснований для понимания того, как квантовая механика может влиять на гравитацию.

Однако были физики, которые работали в этом направлении и которым удалось добиться частичного объединения квантовой механики и общей теории относительности, рассмотрев распространение квантовых полей (квантовая часть) в фиксированной, но искривленной пространственно-временной среде (гравитационная часть). Полное объединение должно, как минимум, содержать рассмотрение не только квантовых флуктуаций полей на пространстве-времени, но также квантовых флуктуаций самого пространства-времени. Простоты ради это усложнение не учитывалось в первых работах. Хокинг воспользовался частичным объединением и рассмотрел, как квантовые поля будут вести себя в очень особой области пространства-времени – в окрестности черной дыры. То, что он обнаружил, поразило физиков до глубины души.

Хорошо известное свойство квантовых полей в обычном, пустом, неискривленном пространстве-времени состоит в том, что из-за квантовых флуктуаций парам частиц, например, электрону и его античастице, позитрону, позволяется мгновенно возникнуть из ничего, немножко пожить, после чего столкнуться друг с другом, и в результате взаимно аннигилировать. Этот процесс, квантовое рождение пары, интенсивно изучался как теоретически, так и экспериментально, и был разобран со всех сторон.

Новой характеристикой квантового рождения пары является то, что если один партнер имеет положительную энергию, то из закона сохранения энергии следует, что другой партнер должен обладать тем же количеством отрицательной энергии – понятие, которое не имеет смысла в классической вселенной. Однако, благодаря принципу неопределенности имеется своеобразная лазейка, позволяющая частицам иметь отрицательную энергию, при условии, что, возникнув, они не сильно долго будут злоупотреблять гостеприимством. Если частица существует лишь мимолетно, то квантовая неопределенность говорит, что никакому эксперименту не хватит времени, даже в принципе, определить знак ее энергии. Именно такова основная причина, почему пара частиц обречена квантовыми законами на быструю аннигиляцию. Поэтому при квантовых флуктуациях пары частиц беспрестанно рождаются и аннигилируют, рождаются и аннигилируют, на фоне неизбежной непрекращающейся игры квантовой неопределенности в пространстве, которое иначе оставалось бы пустым.

Хокинг заново рассмотрел вездесущие квантовые флуктуации, но не в пустом пространстве, а вблизи горизонта событий черной дыры. Он обнаружил, что часто все выглядит как обычно. Пары частиц образуются случайным образом; быстро находят друг друга; после чего аннигилируют. Но время от времени происходит нечто новое. Если частицы образуются достаточно близко к краю черной дыры, то одну из них может затянуть внутрь, а другая улетит в пространство. В отсутствии черной дыры такого никогда не происходит, потому что, если частицы не аннигилируют друг с другом, то частица с отрицательной энергией сможет пробиться сквозь защитную рябь квантовой неопределенности. Хокинг осознал, что столь радикальное закручивание пространства и времени черной дырой может привести к тому, что частицы, обладающие отрицательной энергией с точки зрения наблюдателя снаружи черной дыры, окажутся частицами с положительной энергией для несчастного наблюдателя внутри нее. Таким образом, черная дыра предоставляет частицам с отрицательной энергией надежное убежище, поэтому нужда в квантовой маскировке отпадает. Возникшие частицы могут избежать взаимной аннигиляции и заявить о своей независимой жизни.