Выбрать главу

Фиг. 8.1. Совокупность базисных состояний для двух протонов и электрона.

Конечно, на самом деле у электрона возле протона имеется множество состояний, потому что их комбинация может существовать в виде одного из возбуждён­ных состояний атома водорода. Но нас сейчас не интересует это разнообразие состояний, мы будем рассматривать лишь случай, когда атом водорода пребывает в наинизшем состоя­нии — своем основном состоянии,— и пренебрежем на время спином электрона. Мы просто предположим, что для всех на­ших состояний спин электрона направлен вверх по оси z.

Чтобы убрать электрон из атома водорода, требуется 13,6 эв энергии. Столько же энергии — очень много по нашим тепе­решним масштабам — понадобится и на то, чтобы электрон ока­зался на полпути между протонами (коль скоро сами протоны сильно удалены друг от друга). Так что по классическим поня­тиям электрону немыслимо перескочить от одного протона к другому. Однако в квантовой механике это возможно, хоть и не очень вероятно. Существует некая малая амплитуда того, что электрон уйдет от одного протона к другому. Тогда в пер­вом приближении каждое из наших базисных состояний |1> и |2> будет иметь энергию Е0, равную просто сумме энергий атома водорода и протона. Матричные элементы Н11и H22 гамильтониана мы можем принять приближенно равными Е0. Другие матричные элементы Н12и Н21, представляющие собой амплитуды перехода электрона туда и обратно, мы опять за­пишем в виде -А.

Вы видите, что это та же игра, в какую мы играли в послед­них двух главах. Если пренебречь способностью электрона перескакивать туда и обратно, то два состояния будут иметь в точности одинаковую энергию. Эта энергия, однако, расщеп­ляется на два энергетических уровня из-за того, что электрон может переходить туда и назад, и чем больше вероятность пере­хода, тем больше расщепление. Стало быть, два уровня энер­гии системы равны Е0и Е0-А, и состояния, у которых такие энергии, даются уравнениями (8.7).

Из нашего решения мы видим, что если протон и водород­ный ион как-то расположить близко один к другому, то элек­трон не останется подле одного протона, а будет перескакивать от протона к протону и обратно. Если вначале он был близ од­ного из протонов, то затем он начнет колебаться туда и назад между состояниями |1> и |2>, давая решение, меняющееся во времени. Чтобы получить решение, отвечающее самой низ­кой энергии (которое не меняется со временем), необходимо, чтобы вначале система обладала одинаковыми амплитудами пребывания электрона возле каждого из протонов. Кстати, вспомните, что электронов отнюдь не два; мы совсем не утверж­даем, что вокруг каждого протона имеется электрон. Имеется только один электрон, и это он имеет одинаковую амплитуду (1/Ц2 по величине) быть в том или ином положении.

Дальше, для электрона, который находится близ одного протона, амплитуда А оказаться близ другого зависит от рас­стояния между протонами. Чем они ближе один к другому, тем больше амплитуда. Вы помните, что в гл. 5 мы говорили об амплитуде «проникновения» электрона «сквозь барьер», на что по классическим канонам он не способен. Здесь то же самое положение дел. Амплитуда того, что электрон переберется к другому протону, спадает с расстоянием примерно по экспо­ненте (для больших расстояний). Раз вероятность, а следова­тельно, и значение А при сближении протонов возрастают, то возрастает и расстояние между уровнями энергии. Если си­стема находится в состоянии |I>, то энергия Е0+А с умень­шением расстояния растет так, что эти квантовомеханические эффекты приводят к силе отталкивания, стремящейся развести протоны. Если же система пребывает в состоянии |II>, то полная энергия при сближении протонов убывает; сущест­вует сила притяжения, подтягивающая протоны один к другому. Эти энергии меняются с расстоянием между протонами пример­но так, как показано на фиг. 8.2.