Фиг. 8.1. Совокупность базисных состояний для двух протонов и электрона.
Конечно, на самом деле у электрона возле протона имеется множество состояний, потому что их комбинация может существовать в виде одного из возбуждённых состояний атома водорода. Но нас сейчас не интересует это разнообразие состояний, мы будем рассматривать лишь случай, когда атом водорода пребывает в наинизшем состоянии — своем основном состоянии,— и пренебрежем на время спином электрона. Мы просто предположим, что для всех наших состояний спин электрона направлен вверх по оси z.
Чтобы убрать электрон из атома водорода, требуется 13,6 эв энергии. Столько же энергии — очень много по нашим теперешним масштабам — понадобится и на то, чтобы электрон оказался на полпути между протонами (коль скоро сами протоны сильно удалены друг от друга). Так что по классическим понятиям электрону немыслимо перескочить от одного протона к другому. Однако в квантовой механике это возможно, хоть и не очень вероятно. Существует некая малая амплитуда того, что электрон уйдет от одного протона к другому. Тогда в первом приближении каждое из наших базисных состояний |1> и |2> будет иметь энергию Е0, равную просто сумме энергий атома водорода и протона. Матричные элементы Н11и H22 гамильтониана мы можем принять приближенно равными Е0. Другие матричные элементы Н12и Н21, представляющие собой амплитуды перехода электрона туда и обратно, мы опять запишем в виде -А.
Вы видите, что это та же игра, в какую мы играли в последних двух главах. Если пренебречь способностью электрона перескакивать туда и обратно, то два состояния будут иметь в точности одинаковую энергию. Эта энергия, однако, расщепляется на два энергетических уровня из-за того, что электрон может переходить туда и назад, и чем больше вероятность перехода, тем больше расщепление. Стало быть, два уровня энергии системы равны Е0+А и Е0-А, и состояния, у которых такие энергии, даются уравнениями (8.7).
Из нашего решения мы видим, что если протон и водородный ион как-то расположить близко один к другому, то электрон не останется подле одного протона, а будет перескакивать от протона к протону и обратно. Если вначале он был близ одного из протонов, то затем он начнет колебаться туда и назад между состояниями |1> и |2>, давая решение, меняющееся во времени. Чтобы получить решение, отвечающее самой низкой энергии (которое не меняется со временем), необходимо, чтобы вначале система обладала одинаковыми амплитудами пребывания электрона возле каждого из протонов. Кстати, вспомните, что электронов отнюдь не два; мы совсем не утверждаем, что вокруг каждого протона имеется электрон. Имеется только один электрон, и это он имеет одинаковую амплитуду (1/Ц2 по величине) быть в том или ином положении.
Дальше, для электрона, который находится близ одного протона, амплитуда А оказаться близ другого зависит от расстояния между протонами. Чем они ближе один к другому, тем больше амплитуда. Вы помните, что в гл. 5 мы говорили об амплитуде «проникновения» электрона «сквозь барьер», на что по классическим канонам он не способен. Здесь то же самое положение дел. Амплитуда того, что электрон переберется к другому протону, спадает с расстоянием примерно по экспоненте (для больших расстояний). Раз вероятность, а следовательно, и значение А при сближении протонов возрастают, то возрастает и расстояние между уровнями энергии. Если система находится в состоянии |I>, то энергия Е0+А с уменьшением расстояния растет так, что эти квантовомеханические эффекты приводят к силе отталкивания, стремящейся развести протоны. Если же система пребывает в состоянии |II>, то полная энергия при сближении протонов убывает; существует сила притяжения, подтягивающая протоны один к другому. Эти энергии меняются с расстоянием между протонами примерно так, как показано на фиг. 8.2.