Взяв гамильтониан (10.5), можно подставить его в уравнение
и посмотреть, что делает спиновое взаимодействие с уровнями энергии. Для этого надо подсчитать шестнадцать матричных элементов Hij=<i|H|j>, отвечающих любой двойке из четырех базисных состояний (10.1).
Начнем с того, что подсчитаем, чему равно Н^ |j> для каждого из четырех базисных состояний. К примеру,
Пользуясь способом, описанным немного раньше (вспомните табл. 10.1, она очень облегчит дело), мы найдем, что каждая пара а делает с |+ +>· Ответ таков:
Значит, (10.7) превращается в
Таблица 10.2 · спиновые операторы ДЛЯ АТОМА ВОДОРОДА
А раз все наши четыре базисных состояния ортогональны, то это немедленно приводит к
Вспоминая, что <j|Н|i>=<.i|H|j>*, мы сразу сможем написать дифференциальное уравнение для амплитуды С1:
или
Вот и все! Только один член.
Чтобы теперь получить оставшиеся уравнения Гамильтона, мы должны терпеливо пройти через те же процедуры с H^, действующим на другие состояния. Во-первых, попрактикуйтесь в проверке того, что все произведения сигм в табл. 10.2 написаны правильно. Затем с их помощью получите
И тогда, умножая их все по порядку слева на все прочие векторы состояний, мы получаем следующую гамильтонову матрицу Hij:
Это, конечно, означает, что дифференциальные уравнения для четырех амплитуд Сi имеют вид
Но прежде чем перейти к их решению, трудно удержаться от того, чтобы не рассказать вам об одном умном правиле, которое вывел Дирак. Оно поможет вам ощутить, как много вы уже знаете, хотя нам в нашей работе оно и не понадобится. Из уравнений (10.9) и (10.12) мы имеем
«Взгляните, — сказал Дирак, — первое и последнее уравнения я могу записать также в виде
и тогда все они станут похожими. Теперь я придумаю новый оператор, который обозначу Рспин. обмен и который, по определению, будет обладать следующими свойствами:
Оператор этот, как видите, только обменивает направления спина у двух частиц. Тогда всю систему уравнений (10.15) я могу написать как одно простое операторное уравнение:
Это и есть формула Дирака. Оператор обмена спинами дает удобное правило для запоминания sе·sp . (Как видите, вы теперь уже все умеете делать. Для вас все двери открыты.)
§ 3. Уровни энергии
Теперь мы готовы к тому, чтобы вычислить уровни энергии основного состояния водорода, решая гамильтоновы уравнения (10.14). Мы хотим найти энергии стационарных состояний. Это значит, что мы должны отыскать те особые состояния |y>, для которых каждая из принадлежащих |y> амплитуд Ci=<i|y> обладает одной и той же зависимостью от времени, а именно е-wt. Тогда состояние будет обладать энергией E=hw. Значит, мы ищем совокупность амплитуд, для которых
где четверка коэффициентов аi не зависит от времени. Чтобы увидеть, можем ли мы получить эти амплитуды, подставим (10.17) в (10.14) и посмотрим, что из этого выйдет. Каждое ihdCi/dt в (10.14) перейдет в ECi. И после сокращения на общий экспоненциальный множитель каждое Сiпревратится в аi; получим
Это и нужно решить для отыскания a1, а2, а3и а4. Право, очень мило со стороны первого уравнения, что оно не зависит от остальных,— а это значит, что одно решение сразу видно. Если выбрать Е=А, то