Выбрать главу

а из (7.21)

Приравнивая эти отношения, получаем, что Е должно удовле­творять равенству

(E-H11)(E-H22)-H12H21=0.

То же получилось бы и из (7.22). В любом случае для Е получается квадратное уравнение с двумя решениями:

Энергия E может иметь два значения. Заметьте, что оба они вещественны, потому что Н11и H22 вещественны, а Н12Н21, равное Н12H12=|H12|2, тоже вещественно, да к тому же положительно.

Пользуясь тем же соглашением, что и раньше, обозначим большую энергию EI, а меньшую ЕII. Имеем

Подставив каждую из этих энергий по отдельности в (7.18) и (7.19), получим амплитуды для двух стационарных состояний (состояний определенной энергии). Если нет каких-либо внеш­них возмущений, то система, первоначально бывшая в одном из этих состояний, останется в нем навсегда, у нее только фаза будет меняться.

Наши результаты можно проверить на двух частных слу­чаях. Если H12=H21=0, то получается EI=H11 и EII=H22. А это бесспорно правильно, потому что тогда уравнения (7.16) и (7.17) не связаны и каждое представляет состояние с энер­гией H11 и H22. Далее, положив H11=H22=E0 и H21=H12=-А, придем к найденному выше решению:

еI0и еII0-а.

В общем случае два решения ЕIи ЕIIотносятся к двум состояниям; мы их опять можем назвать состояниями

У этих состояний С1и С2будут даваться уравнениями (7.18) и (7.19), где а1и а2 еще подлежат определению. Их отношение дается либо формулой (7.23), либо (7.24). Они должны также удовлетворять еще одному условию. Если известно, что си­стема находится в одном из стационарных состояний, то сумма вероятностей того, что она окажется в |1>или |2>, должна равняться единице. Следовательно,

или, что то же самое,

Эти условия не определяют а1и а2 однозначно: остается еще произвол в фазе, т. е. в множителе типа еid. Хотя для а можно выписать общие решения, но обычно удобнее вычислять их в каждом отдельном случае.

Вернемся теперь к нашему частному примеру молекулы аммиака в электрическом поле. Пользуясь значениями Н11, H22 и Н12из (7.14) и (7.15), мы получим для энергий двух ста­ционарных состояний выражения

Эти две энергии как функции напряженности x электрического поля изображены на фиг. 7.2.

Фиг. 7,2. Уровни энергии молекулы аммиака в электрическом поле.

Кривые построены по формулам (7.30):

Когда электрическое поле нуль, то энергии, естественно, обращаются в Е0±А. При наложении электрического поля расщепление уровней растет. Сперва при малых x оно растет медленно, но затем может стать пропор­циональным $. (Эта линия — гипербола.) В сверхсильных полях энергии попросту равны

Тот факт, что у азота существует амплитуда переброса вверх — вниз, малосуществен, когда энергии в этих двух поло­жениях сильно отличаются. Это интересный момент, к которо­му мы позже еще вернемся.

Теперь мы наконец готовы понять действие аммиачного мазера. Идея в следующем. Во-первых, мы находим способ отделения молекул в состоянии |I> от молекул в состоянии |II>. Затем молекулы в высшем энергетическом состоянии |I> пропускаются через полость, у которой резонансная частота равна 24000 Мгц. Молекулы могут оставить свою энергию полости (способ будет изложен позже) и покинуть полость в состоянии |II>. Каждая молекула, совершившая такой пере­ход, передаст полости энергию E=EIII. Энергия, отобран­ная у молекул, проявится в виде электрической энергии поло­сти.