Выбрать главу

Mike shook his head, still angry.

“Approximately twenty percent of all processors are battery powered,” ELOPe explained. “Of those, logic and statistics would suggest a good percentage are still receiving a charge. Therefore, even if the batteries ran out on those devices, the virus would still have eighty-five percent or more of their computational power available to them. If they take the suggestion I offered, to restore the original service of the phones, then the virus will use fifty percent or less of the computational power on those nodes. The difference it makes for the virus is minimal either way, while restoring communication would allow human civilization to begin functioning again. Logic and predictive modeling is strongly in favor of my actions.”

“That’s not the point,” Mike said quietly. Internally, he was wondering about ELOPe’s motivations. Sure, it made sense that restoring communication would be a tremendous win for humanity, but ELOPe was the master of persuasive arguments. It was hard enough to keep track of ELOPe under normal conditions, and these were anything but normal conditions.

* * *

Lieutenant Walsh discretely took another modafinil tab to chase away the brain fog that threatened to engulf her thoughts. Modafinil had been banned five years earlier, but Chinese pharmaceuticals kept pumping them out, and Sally found it was easy to order them through a Brazilian online pharmacy. Originally designed as a narcolepsy drug, it had been used and abused by college students looking for that edge to ace their exams and bloggers looking to churn out yet more posts. The sixty deaths that occurred one spring during Finals week were blamed on modafinil, although it was really the combination with a designer caffeine alternative that was the threat. Nonetheless, the stuff was illegal now. The military preferred dex, used it all the time for pilots in fact, but it was under lock and key and took too much paperwork to requisition.

Sally returned to her war room. DeRoos and the rest of the team of hot doggers had finished the evaluation of the DIABLO virus she had requested, despite the NSA’s assurances that it was safe to release.

“Fact is, Ma’am, there isn’t much to it,” DeRoos said as she entered the room. “We will insert and execute the virus on computers running under our control, and then step back. The virus contains a master control panel, and we have the private keys that allows us to direct the virus.”

“What controls do we have?” Sally asked, the modafinil coming online, her brain perking up.

“Ma’am, we’ll be able to run a handful of commands such as fetching data, executing existing programs, and conducting denial of service attacks. It looks like we’ll also be able to inject code from our headquarters here. As for the enemy virus, the ability for DIABLO to detect and neutralize any enemy viruses is built into the core functionality. Apparently the spooks considered it standard operating procedure for cyber warfare. So merely releasing the damn thing should disable the virus.”

“Thanks DeRoos. Is there anything else before we get started?”

“No ma’am.”

She paused, doubting yet again the wisdom of this, and considered disobeying the direct order to release the virus. It was her obligation to disobey an unlawful order, but it wasn’t the legality that concerned her, just the wisdom of it. With a sigh, she gave in. With the clarity of the modafinil she saw that if it wasn’t her, it would be someone else. “You have my permission to release.”

DeRoos and the three other techs executed the prearranged injection plan. If it went according to plan, DIABLO would go out to a thousand uninfected military systems, take root on those military systems, expand its infection across millions of military systems, then use that combined might to assault the enemy virus on civilian systems.

Sally watched them start working the highly modified interfaces of the Stross phones, then backed off to give them space. No one needed a senior officer standing over them. She pretended to study reports on her phone, anxiously awaiting some kind of status update.

“Lt. Walsh, we have status trickling back in, ma’am,” Private DeRoos reported twelve minutes later. “DIABLO communicates like a peer to peer network. We can request status from the thousand machines we infected, then those thousand machines contact the machines they infected, and so forth.”

“Yes, go ahead.”

“Those thousand infections were all successful, and it’s gone on to the fourth generation by now. We have over ten million infected military systems, and now it’s hitting our outbound backbone connections.”

“So it’s attacking the civilian systems now, the ones infected with the original virus,” Sally mused, then out loud: “When will we know if it is successful?”

“I’ve configured a payload for DIABLO to execute after infection. It will identify non-military systems by a few different criteria: the absence of our security software, manufacturer of the computer, network domain. We should start to see a status count of these civilian computers.”

“How long?”

“In the next few minutes.”

“Keep me apprised, Private.”

CHAPTER NINE

Alarms A-Ringing

In 2015 the United States Department of Defense looked at their long range plans and saw that the future of warfare was robots. Airborne drones and robot tanks would take the place of people in the field. If you took people out of the equation, everything was simplified. No human bodies to coddle. Planes became smaller, more nimble. Tanks faster, more solid. Sure, people still existed, but now they could be safely in an office cubicle or on an aircraft carrier, far from any action.

The first generation of robots were remote controlled drones. One plane to a pilot. One tank to a tank driver. One humanoid robot to a soldier. But this was inefficient. People made mistakes. Their reaction time was slow. They couldn’t keep up with the machines.

The second generation of robots were improved by developing targeting and movement algorithms. With the new robots, a tank driver might control a dozen tanks using a composite display of real-time data including satellite feeds, radar and laser scanning. Rather than worry about the mechanics of firing guns or driving over rough terrain, a tank driver could instead select a group of tanks on screen and give the whole group waypoints, targets, and objectives. It became a strategy game instead of a tactics game.

Extrapolating from the first two generations of combat bots, the Department of Defense could see the future. They would need more and better algorithms. Algorithms for targeting, driving, moving units, patrolling, and strategy. Wars would be decided in the future not by the armament carried by a plane but by the algorithms that used those weapons.

For thirty years the video game industry had been developing in-game artificial intelligences to go up against the human player. But video game players chronically complained about these in game artificial intelligences. They weren’t really that smart. By comparison to the military, the game designers had it easy. They could always make up for a weak game AI by simply giving the AI more resources. Give the AI more planes, tanks, and soldiers. Make them cheaper and more powerful for the AI.

But the Department of Defense didn’t have unlimited resources. They couldn’t simply spawn more planes on demand. They needed incredibly good AI algorithms, better than anything that existed up until that point.

It was a young recruit from Silicon Valley who had pointed out what was completely foreign to the military. To get the best algorithms, you needed a competition. The best competition would come from online gamers. DARPA provided funding, carefully buried under two layers of venture capital companies. Silicon Valley and Portland provided startup engineers.