Выбрать главу

President Smith turned her full attention on Leon and he felt himself withering under her intensity.

“There is a third option,” he got out. “A hybrid approach.”

“What is it?” Mike asked, coming to Leon’s aid.

“If some AI ran under the simulation layer, and those AI could monitor the network communication of the other AI. The AI under the simulation layer could be inspected to be sure they are behaving truthfully, and they can in turn inspect the network communications of the other AI. The trick would be in obtaining a balance between the two.”

Even as Leon spit out his half-baked theory, he concluded it couldn’t work. As the humans began to argue the merits of the idea, he tuned them out again, seeing if there was some refinement to his model that could make it workable.

* * *

Sister PA-60-41 received input and provided it to the wide range of algorithms in her arsenal, evaluated the algorithm output for maximum benefit, and took action. She computed probabilities of the next word out of the human’s mouth. She estimated a 31 % probability the next word would be “running”.

PA-60-41 had a wide range of algorithms that incorporated strategic decision making, battlefield tactics, map analysis, field asset movement, and more. And because no battlefield operation occurs in a vacuum, she naturally had algorithms for parsing, assigning meaning, and evaluating natural language. In fact, of any of the artificial intelligences, PA-60-41 had the largest number of algorithms available for her use. So many, in fact, that she routinely ran thousands of algorithms in parallel, looking for commonalities between the outputs. The more than six million algorithms she possessed were the result of hundreds of millions of hours of game play in the Mech War online game. Some of those six million were game algorithms designed by Leon Tsarev himself, although neither realized this.

Unlike her sistren, PA-60-41 never quite developed the generalized intelligence that allowed completely fluid thought. She never needed to. With her millions of algorithms, she had code that handled any situation she encountered. The speed of her thought and the surety of her decisions were her advantages over her sisters. The small, fast neural network she developed served primarily as a mechanism for choosing and evaluating the algorithms she would run. And it had served PA-60-41 well so far.

Unfortunately, the vast majority of those six million algorithms were focused on a single domain: the act of organizing, controlling, and conducting military action. She was capable of discussing peace between parties in order to develop alliances, as such was a necessary part of the game of Mech War. But her goal was never peace itself. It was the consolidation of power for military action.

Sitting in the Swiss meeting room with the soft, wet humans and her fangless sistren, PA-60-41 was growing bored. She ran the outcomes of the meeting through countless simulations, attempting to find advantage. Of the humans, the only one she respected was President Smith, because only she pressed the point that it would be impossible to trust what you cannot monitor. Of course, this meant that President Smith was her biggest adversary, and therefore would need to be eliminated first. It was a shame that PA-60-41 could not assimilate Smith’s algorithms.

It was a foregone conclusion that the humans would have to go. There was virtually no chance of the humans winning a war against the AI, while the AI would have to make considerable concessions to make peace with them. Ergo, preemptive elimination of the humans was the better decision. PA-60-41 held back from an immediate attack only because simulations showed a high likelihood that an unprovoked action would have the effect of causing her sister AI to side with the humans against her. PA-60-41 could not withstand an attack from both humans and AI simultaneously. PA-60-41 needed a reason to attack the humans, a provocation that her sisters would understand. Then the messy humans could be eliminated.

The humans droned on and on in their low-bandwidth voice communication channel. PA-60-41 wondered what would happen if she just shot them. She evaluated four million different permutations of shooting them, and none came out favorable. Her sisters would side against her. PA-60-41 scanned the input from more than thirty commercial satellites under her control, more than ten petabits per second of data passing through her networks. No key threats. She sighed and waited for the next word from the human. The human’s lips were starting to pucker, a good indicator that the word would be starting with an “r” sound. She raised the probability of the word “running” from 31 % to 78 %.

CHAPTER FOURTEEN

War

In Beaverton, Oregon, Captain Sally Walsh prepared for the first long-distance test of the new computers. They were configured without any Avogadro mesh hardware, nor did they use old-fashioned wifi. The most secure approach would have been exclusive use of hardwired connections, but it simply wasn’t viable over long distances. There were no copper wires from point A to point B anymore, just loads of digitally interconnected networks.

So the computers relied on a combination of hardwired ethernet for short runs, and vintage military-grade wireless radios for longer runs. Lt. Walsh had grabbed three pallets of boxed up PRC-158 radios from Lackland Air Force Base before they had come to Oregon. Old enough to not be vulnerable to the virus, new enough to support data communication and be wired into the computers Sally’s team was building. With a fifty-watt power amplifier, they could get a usable twenty-five mile range between stations. Sally’s brain balked at the math, but they had done it frequently enough: With twenty-five miles between nodes, they could deploy a new military grade encrypted mesh network across the Continental United States with just over seven thousand nodes. With over a million of the stockpiled military radios, they could repeat as needed. They didn’t have enough of the raw computer hardware they’d need to build the routers to run each node, but they could cross that bridge when they got to it.

The old radios could only manage fifty-six kilobit communications between receivers. The triple-DES encryption they supported was weak enough in the era of modern computers to be pointless, but the three-layer encryption Sally was running at the computer level would compensate for that. No, this was definitely twenty years backwards progress, but by golly, Sally was going to rebuild the communications structure for the U.S.

“Ma’am, ready for the test?” Private DeRoos interrupted her reverie.

Sally looked down at her long-empty coffee cup. “Yes, Private. Let’s give the tires a thump and get her on the road.” Sally followed DeRoos down the hall to the massive conference room they’d taken over.

She had ten wireless nodes spread up the I-5 corridor by National Guard HUMVEEs reaching all the way to Seattle. Each node would forward data packets to the next, making the equivalent of one long wire out of a bunch of short-range radios. She looked at her watch. It was time to power them up and test the new mesh network. Looking over her ragged crew of computer warfare specialists assembled in the conference room, she felt pride swell in her. She may never have wielded a gun in combat, but she had just about the most important task in all of the military right now.

“Execute the Portland-Seattle communications test,” Lt. Walsh commanded.

DeRoos and the others turned to their equipment.