Решительный ответ таков: нет, нет и еще раз нет. Несмотря на некоторую осведомленность в математических вопросах, знание соответствующей литературы (хотя бывают и совершенно невежественные ферматисты), несмотря на любовь и уважение к математике, несмотря на пылкость и трудолюбие, эти люди не имеют никакого права на то, чтобы называться математиками. Этого права их лишает полная бесплодность работы.
Математика часто представляют романтиком, идеалистом. В действительности он самый большой реалист. Но его реализм заключается не в узком утилитаризме, не в стремлении выжать из всего практическую пользу (об отсутствии таких тенденций, особенно у молодых математиков, мы уже говорили подробно), а в том, что он никогда не возьмется за какое-то дело, если не видит с достаточной ясностью возможности довести это дело до конца.
Ферматиста, по-видимому, привлекает сам процесс размышлений и поисков; математика влечет результат — не практический, а математический результат, решение поставленной задачи. Для ферматиста не существенно, если процесс исканий бесконечно затягивается, — тем дольше живет иллюзия творчества. Для математика топтание на одном месте невыносимо.
Мышление ферматиста можно охарактеризовать как сумеречное. Он живет в неясном ожидании некоего чуда и не обладает достаточной решимостью признаться самому себе, что чуда не произойдет. Рассуждая поверхностно, отворачиваясь от всего, что может принести ему огорчение, он создает для себя искусственную ситуацию и с неизбежностью все дальше запутывается в самообмане. По прошествии нескольких лет бессмысленных, но дорогих ему усилий он оказывается настолько вовлеченным в систему лжи, что отбросить ее уже не может. Такое встречается иногда н в других областях, например, в политической деятельности. Но там трусость и связанное с ней самоослепление чреваты страшными последствиями (вспомните судьбу «теоретиков», оправдывавших и обосновывавших нацизм), в то время как в математике или в других близких научных вопросах добровольное отгораживание себя от реальности не приводит к трагической развязке. Ферматист сколь угодно долго может пребывать в не приносящем ему особой радости, но устойчивом состоянии равновесия.
Мышление математика последовательно и бескомпромиссно. Как бы ни были ему неприятны какие-то выводы, он принимает их, если они неизбежно следуют из достоверных фактов или принятых аксиом. Он стремится дойти во всяком рассуждении до самых основ, обрести полную ясность.
Самая большая любовь математика — любовь к простоте. Она является основной движущей силой его деятельности. Ему ненавистны завуалированность, недосказанность, двусмысленность, намеки, многозначительные недоговорки. Когда он сталкивается с запутанной ситуацией, которую многие другие люди, например, некоторые представители художественных профессий, очень любят (считая, что запутанность означает сложность, а сложность означает богатство содержания), у него появляется дьявольски сильное желание разрубить ее прямолинейным ударом меча.
Именно с прагматизмом математика, с его непреоборимой тягой к определенности и конкретности результата связано его равнодушное отношение к шахматам. Возможно, математик, если бы захотел, играл бы несколько лучше нематематика. Но все дело в том, что для него эта игра не представляется интересной. Вот если бы она была несколько попроще — вроде «игры в 15» — и допускала бы полный обсчет, тогда бы этот обсчет представлял для математика любопытную задачу, которую он мог бы взяться решить. Но дать точную теорию шахматной игры пока невозможно. А выигрывать отдельные партии — занятие частное, не допускающее обобщения, не имеющее «выходов» в какие-то другие части интеллектуального царства, короче говоря, в прагматическом смысле бесперспективное. Играть в шахматы можно учиться всю жизнь, но никогда нельзя научиться играть абсолютно правильно. Поэтому с точки зрения математики шахматы являются чем-то вроде теоремы Ферма — топтанием на месте, упражнением, не приводящим к результату. В этом и заключается частичное объяснение парадокса Пуанкаре.
Можно спросить: так что же, «вечные» проблемы математики так и обречены оставаться нерешенными? Так их и будут обходить ученые, боясь зря потратить время?
Разумеется, нет. Ярчайшим опровержением служит недавнее разрешение американским молодым математиком Полем Коэном одной из казавшихся безнадежных задач. Она была сформулирована 80 лет назад, и в последние годы уже мало кто относился к ней серьезно. Однако Коэн взялся за эту проблему, не будучи ни в малейшей степени ферматистом. Просто он является ученым самого высокого класса, обладает огромными знаниями, талантом. Большому кораблю — большое плавание, говорят в народе. Коэн как математик так силен, что, выбирая задачу себе по плечу, остановился «всего-навсего» на проблеме континуума. И решил ее.
После этих вводных слов давайте приступим к проверке вашего качества № 2, необходимого математику, — стремления к конкретности, любви к результату, научного реализма. Ответьте на нижеследующие вопросы с максимальной честностью, иначе все предприятие лишается смысла.
1. Когда вы в детстве задавали взрослым традиционные «почему?», старались ли вы докопаться до самого корня, нанизывая вопросы один за другим, как шашлык на шампур, или удовлетворялись первым же ответом, хотя бы и совершенно бессмысленным?
2. Слушая чей-то рассказ о некоторых событиях, пытаетесь ли вы во что бы то ни стало уловить основную мысль, вывод или вам доставляет удовольствие сам процесс словоизъявления, радует чистая, так сказать, риторика?
3. Рассказывая что-то другим, подчеркиваете вы в конце основную свою мысль или вам приходится частенько слышать реплики «Ну и что же из этого следует?» и «Что же ты хочешь этим сказать?»?
4. Возникало ли у вас когда-нибудь сильное желание узнать, из каких частиц состоит материя и какова структура Вселенной, или вы изучали атомную физику и астрономию только потому, что они входили в учебные программы?
5. Являетесь ли вы решительным противником того мнения, что древние люди, например, эллины, населявшие природу мифологическими существами, жили более интересной эмоциональной жизнью, чем мы, которым открыта вся «подноготная» явлений окружающего мира, или вы согласны с этим мнением?
6. Предпочитаете ли вы Хемингуэя Голсуорси или ставите второго выше первого?
7. Раздражаетесь ли вы, когда вам рассказывают содержание фильма, который вы собираетесь посмотреть, или же, наоборот, вы любите предварительно послушать такой рассказ?
Эти вопросы, конечно, не идеальны с точки зрения качества теста, а может быть, и просто плохи. Они подбирались без помощи какой-либо психологической теории, вроде тех, которые употребляются при изучении умонастроения избирателей перед выборами президента США или при измерении интеллектуальных способностей призывников в тех же США. И все же, если вы в каждой из семи альтернатив укажете на первую часть, это будет означать, что вас можно рекомендовать к следующему туру испытания.