Ek=½me∙V2=1,30∙10−19 Дж,
где me — масса электрона, составляющая 9,11∙10−31 кг. Умножая уравнение для Ek на 2 и деля его на me, получаем:
V2=2∙(1,30∙10−19 Дж)/me = (2,60∙10−19Дж)/(9,11∙10−31кг) = 2,85∙1011 м2/сек2.
Это значение квадрата скорости. Извлекая квадратный корень, получаем: V=5,34∙105 м/сек, что составляет около двух миллионов километров в час. В этом примере фотоэлектрического эффекта выбитый электрон движется весьма резво.
Классическая электромагнитная теория, описывающая свет как волны, прекрасно работает применительно к огромному числу явлений, включая интерференцию, но совершенно не подходит для объяснения фотоэлектрического эффекта. Эйнштейн объяснил фотоэлектрический эффект, но теперь свет не может быть волнами. Что же тогда происходит с классическим описанием интерференции? Для примирения фотоэлектрического эффекта и интерференции нам придётся вернуться к квантовой теории и котам Шрёдингера.
5. Свет: волны или частицы?
Объяснение фотоэлектрического эффекта, которое обсуждалось в главе 4, требует нового теоретического описания интерференционного эксперимента, изображённого на рис. 3.4. Для того чтобы объяснение этого эксперимента не противоречило описанию фотоэлектрического эффекта, надо отказаться от классического мышления и совершить большой скачок к мышлению квантовомеханическому. Обсуждая в главе 2 абсолютные размеры, мы говорили о том, что измерению малой в абсолютном смысле системы всегда сопутствует возмущение, которым нельзя пренебречь. Однако мы не обсуждали природу и следствия такого возмущения. Теперь пришло время вплотную заняться выяснением истинного характера материи и тем, что происходит, когда мы выполняем измерения.
Проблема, с которой мы столкнулись, состоит в том, что для объяснения явления интерференции на рис. 3.4 используются световые волны, а для объяснения фотоэлектрического эффекта, представленного на рис. 4.3 и 4.4, — «частицы света» — кванты, называемые фотонами. В классической модели световых волн для количественного описания интерференции используются уравнения Максвелла. В этой теории световая волна математически описывается волновой функцией. Функция задаёт её амплитуду, частоту и пространственную локализацию. Входящая световая волна характеризуется одной волновой функцией. В классическом представлении после того как световая волна попадает на полупрозрачное расщепляющее зеркало, половина волны уходит по одному плечу интерферометра, а половина — по другому (см. рис. 3.4). Теперь есть две волны и две волновые функции — по одной для каждой волны. Эти волновые функции описывают волны, которые вдвое уступают по интенсивности первоначальной входящий волне и имеют разную локализацию — в двух плечах интерферометра. Если эти две волновые функции математически объединить для описания того, что происходит в области перекрытия, обведённой кружком на рис. 3.4, то можно рассчитать интерференционную картину. Всё это так хорошо работает, что считалось, будто то же самое математическое представление может быть применимо и к фотонам.
Классическое описание интерференции не годится для фотонов
На рис. 5.1 вновь изображён интерферометр. Он точно такой же, как на рис. 3.4, за исключением того, что световой луч на этот раз состоит из фотонов. Первоначально считалось, что когда луч из фотонов падает на полупрозрачное зеркало, половина фотонов движется по первому плечу прибора и попадает на концевое зеркало 1, а другая половина идёт по второму плечу интерферометра, попадая на концевое зеркало 2. Затем фотоны отражаются от концевых зеркал, и после ещё одного попадания на полупрозрачное зеркало половина фотонов из каждого плеча достигает области перекрытия. Считалось, что интерференционная картина возникает тогда, когда фотоны из одного плеча прибора интерферируют с фотонами из другого плеча. Это представление, как выяснилось, является ошибочным.