Для понимания природы принципа неопределённости важно рассмотреть случай гауссовых кривых, подобных тем, что изображены на рис. 6.7. В этом случае ∆x∙∆p=h/4π. Данное уравнение показывает, какая информация может быть одновременно известна о положении и импульсе частицы. Величина h/4π является константой. Таким образом, произведение ∆x∙∆p равно константе. Следовательно, если неопределённость импульса ∆p велика, то неопределённость положения ∆x должна быть мала, чтобы их произведение составляло h/4π. С другой стороны, если значение ∆p мало́, то значение ∆x — велико.
Связь между ∆p и ∆x проиллюстрирована на рис. 6.7. Принцип неопределённости гласит, что вы можете знать кое-что об импульсе частицы и кое-что о её положении, но вы не можете точно знать и положение, и импульс частицы в одно и то же время. Эта неопределённость — невозможность одновременно знать и положение, и импульс частицы — резко контрастирует с классической механикой. Для классической теории совершенно принципиально то, что, как показано на рис. 2.5, положение и импульс частицы могут быть точно известны (измерены) одновременно. Квантовая теория утверждает, что невозможно одновременно точно знать положение и импульс. Они могут быть известны лишь с некоторыми неопределённостями — ∆x и ∆p.
Анализируя соотношение для принципа неопределённости ∆x∙∆p=h/4π, рассмотрим, что случится, если делать ∆p всё меньше и меньше. Разделив обе части уравнения на ∆p, получаем:
∆x=h/4π∙∆p.
Поскольку ∆p уменьшается, делитель становится всё меньше и меньше, а значит, ∆x возрастает. В пределе, когда ∆p устремляется к нулю, ∆x стремится к бесконечности. Этот предел имеет глубокий смысл. Если ∆p обращается в нуль, импульс известен совершенно точно, но положение становится совершенно неопределённым. При ∆x=∞ частицу можно с равной вероятностью обнаружить где угодно.
Этот результат согласуется с тем, что мы выяснили, обсуждая рис. 6.1, на котором показан вид волновой функции для собственных значений импульса. Когда частица находится в собственном состоянии импульса, значение её импульса определено совершенно точно. Однако её функция амплитуды вероятности, которая описывает вероятность обнаружить частицу в некоторой области пространства, размазана (делокализована) по всему пространству. Во всех точках вероятность обнаружить частицу одинакова: ∆x=∞. Это контрастирует с волновыми пакетами, изображёнными на рис. 6.7, где суперпозиция собственных состояний импульса порождает состояние, в котором больше нет идеально точно определённого импульса, но зато имеется некоторая информация о положении. Положение и импульс известны с точностью до их неопределённости.
Можно преобразовать соотношение для неопределённостей следующим образом:
∆p=h/4π∙∆x.
Отсюда видно, что в пределе, когда ∆x стремится к нулю (идеально точно определённое положение), ∆p стремится к бесконечности. Если нам совершенно точно известно положение, импульс может иметь любое значение. Волновой пакет, составленный из всех собственных значений импульса (∆p=∞), имеет совершенно точно определённое положение. Можно точно узнать p, но лишь ничего не зная об x; можно точно узнать x, но лишь ничего не зная о p. Это называется дополнительностью. Можно узнать x или p, но не то и другое одновременно.