Дифракция на решётке заставляет волны определённой длины (конкретного цвета) конструктивно складываться в одном направлении. Интенсивность света, связанная с амплитудой вероятности световой волны, пропорциональна квадрату амплитуды волны. Поэтому в направлении конструктивной интерференции для конкретного цвета, например красного, интенсивность света оказывается велика. В других направлениях красный свет будет испытывать деструктивную интерференцию, поскольку его длина волны такова, что разность расстояний до каждой канавки не равна целому числу длин волн. Для другого цвета, скажем голубого, существует другое направление, вдоль которого свет, приходящий от всех канавок, будет складываться конструктивно (см. рис. 7.1). Поэтому голубая составляющая входящего фотонного волнового пакета будет покидать решётку в виде волны большой амплитуды в своём собственном направлении, и в этом направлении интенсивность голубой составляющей входящего света будет выглядеть очень большой.
Электроны в кинескопе ведут себя как снаряды
Дифракция света на решётке выявляет волновые свойства фотонных волновых пакетов, в то время как фотоэлектрический эффект демонстрирует их корпускулярные свойства, соответствующие большей степени локализации. При обсуждении длины волны де Бройля, которая связана с импульсом соотношением p=h/λ, говорилось, что описание электронов и других типов «частиц» аналогично описанию фотонов. И фотоны, и электроны описываются посредством волн амплитуды вероятности. И те и другие представляют собой более или менее локализованные волновые пакеты (см. рис. 6.7). Для электрона, представляющего собой свободную частицу (в отсутствие действующих на него сил), волновой пакет является суперпозицией импульсных собственных состояний свободной частицы. Неопределённость положения электрона ∆x зависит от неопределённости (разброса) по импульсу ∆p согласно соотношению неопределённостей Гейзенберга: ∆x∙∆p≥h/4π. Равенство здесь соблюдается для гауссовых волновых пакетов, которые имеют форму, показанную на рис. 6.7.
Чтобы проиллюстрировать как волновую, так и корпускулярную природу электронов, рассмотрим два примера: работу кинескопа (электронно-лучевой трубки, ЭЛТ) и дифракцию низкоэнергетических электронов на поверхности кристалла. Кинескопы применяются весьма широко. Это устройства, которые создают изображение в старых телевизорах и компьютерных дисплеях. Правда, в последнее время громоздкие телевизоры и мониторы, основанные на ЭЛТ, практически полностью вытеснены другими устройствами, такими как жидкокристаллические (ЖК) дисплеи. (Существует несколько технологий, используемых для больших плоских телевизоров, но все плоские компьютерные мониторы — жидкокристаллические.)
На рис. 7.3 схематично изображено устройство ЭЛТ. Внутри ЭЛТ создаётся вакуум, в котором электроны могут двигаться, не сталкиваясь с молекулами воздуха. Процесс создания картинки начинается с нити накаливания — отрезка проволоки, изображённой в левой части рисунка. Электрический ток, который проходит по этой нити, сильно разогревает её подобно спирали обычной лампы накаливания, нагревательному элементу электрокамина или электрического обогревателя. Тепло, выделяемое этой нитью, нагревает катод, и он тоже становится очень горячим. Катод — это кусок металла, на который подано отрицательное напряжение, как на отрицательном конце батарейки, но значительно большее по величине. Катод становится настолько горячим, что с него начинают испаряться электроны. Тепло — это форма энергии. Электроны удерживаются в металле энергией связи, которая зависит от типа металла. Когда металл достаточно сильно разогревается, тепловая энергия может превосходить энергию связи электрона, и некоторые электроны будут покидать металл. При фотоэлектрическом эффекте энергию, необходимую для выхода электрона из металла, приносит фотон. В ЭЛТ эту энергию обеспечивает тепло. Электроны, покидающие металл, замещаются благодаря подключению катода к отрицательному полюсу источника питания, который поставляет на их место другие электроны, делая процесс непрерывным. Электроны — это отрицательно заряженные частицы, и поскольку на катод подано отрицательное напряжение, катодом испускаются электроны. Итак, электроны вылетают из катода. Уходу электронов от катода помогает положительно заряженная сетка (см. рис. 7.3). Поскольку эта сетка соединена с положительным полюсом источника питания, отрицательно заряженные электроны притягиваются к ней. Одинаковые заряды отталкиваются друг от друга, противоположные заряды притягиваются. Сетка состоит из тонких проводков с большими просветами между ними. Когда электроны достигают сетки, большинство из них пролетает сквозь неё, продолжая движение с очень большой скоростью.