Не так, как при бросании монеты
Существует принципиальная разница между котами Шрёдингера, или, более строго, реальными квантовыми экспериментами, и бросанием монеты. Перед броском монета повёрнута вверх либо орлом, либо решкой. Бросая её, я не знаю, каким будет исход, но монета начинает движение из хорошо определённого состояния — вверх либо орлом, либо решкой — и заканчивает тоже в хорошо определённом состоянии — орёл или решка. Можно построить машину, которая подбрасывает монету настолько точно, что при падении та всегда даёт один и тот же результат. Никакие законы природы этому не препятствуют. Кладя монету в машину решкой вверх, можно переключателем задать, как именно она должна выпасть — орлом или решкой. Когда монету бросают рукой, нельзя абсолютно точно повторить движение, что и делает исход случайным. Однако ящик, содержащий кота Шрёдингера, — это совсем другое дело. Кот является смесью живого и мёртвого в соотношении 50 на 50. Именно акт вскрытия ящика и наблюдения состояния кота заставляет последнего перейти из «смешанного состояния» в «чистое» — либо живое, либо мёртвое. Не имеет значения, как именно открываются ящики. В отличие от случая с монетами машина, построенная для открывания всей тысячи ящиков в точности одинаковым способом, не приведёт к получению одинаковых результатов. Единственное, что известно при вскрытии любого ящика, — то, что с вероятностью 50 % в нём обнаружится живой кот.
Реальные явления могут вести себя подобно шрёдингеровским котам
Как уже отмечалось, с проблемой кота Шрёдингера нельзя столкнуться в жизни. Однако многие частицы и состояния ведут себя подобно тому, что происходит при открывании ящиков с котами Шрёдингера. Частицы, такие как фотоны (частицы света), электроны, атомы и молекулы, обладают «смешанными состояниями», которые при наблюдении превращаются в «чистые состояния», аналогично тому, как это было описано для случая с котами Шрёдингера. Сущности, лежащие в основе привычных нам веществ, процессов и явлений, на фундаментальном уровне ведут себя столь же контринтуитивно, как шрёдингеровские коты. Однако проблема заключается не в поведении электронов и атомов, а скорее в нашем интуитивном представлении о том, как вещи должны себя вести. Наша интуиция основана на повседневном опыте. Мы получаем информацию посредством чувств, позволяющих наблюдать лишь те явления, в которых поведение материи подчиняется законам классической механики. Чтобы принять кванотовомеханический мир, который окружает нас повсюду, но который мы не можем понять интуитивно на основе наших сенсорных восприятий, необходимо выработать новое понимание природы и новую интуицию.
2. Размер абсолютен
Фундаментальная природа размера имеет решающее значение для понимания различий между теми аспектами повседневной жизни, которые согласуются с нашим интуитивным восприятием природы, и миром квантовых явлений, которые тоже окружают нас. Мы хорошо чувствуем, как движутся бейсбольные мячи, но, как правило, склонны недооценивать степень своего незнания относительно того, что придаёт вещам различный цвет и почему нагревательный элемент электрокамина становится горячим и от него исходит красное свечение. Движение бейсбольных мячей можно описать, используя законы классической механики, но цвет и электрический нагрев — квантовые явления. Разница между классическими и квантовыми явлениями непосредственно связана с определением размера.
Корректным представлением о размере является кванотовомеханическое, и оно сильно отличается от привычного нам. Зато наше обыденное представление о размере играет центральную роль в классической механике. Неправильная трактовка понятия размера и все последствия этой ошибки ответственны, в конечном счёте, за неспособность классической механики правильно описывать и объяснять поведение фундаментальных составляющих материи. Квантовомеханическое описание материи лежит в основе технологий в столь разных областях, как микроэлектроника и создание фармацевтических препаратов.