Возмущения, которыми нельзя пренебречь, — это важно
Обратимся теперь к рис. 2.6. Камень подготовлен так же, как на рис. 2.5. В момент t=0 он имеет координату x и импульс p. Следующий момент наблюдения t=t´.
Положение камня предсказывается по значениям x и p в момент t=0. Однако через некоторое время после момента t=t´ в камень врезается птица. (Простите меня за то, как она нарисована, — это лучшее, что я смог изобразить с помощью мыши.) На жаргоне физиков это называется событием рассеяния камня на птице. Столкнувшись с камнем, птица вызывает возмущение, которым нельзя пренебречь. Неудивительно поэтому, что измерения положения и импульса, выполненные после события рассеяния, не будут соответствовать предсказаниям, сделанным на основе траектории, определённой в момент t=0. Согласно допущениям классической механики, если мы всё знаем о птице, камне и их взаимодействии (столкновении друг с другом), то можем определить, что случится после рассеяния камня на птице. Можно проверить наши предположения посредством наблюдения. Наблюдение в классической механике возможно благодаря тому, что всегда существует метод наблюдения, вызывающий ничтожно малые возмущения системы, то есть способ сделать систему большой. Однако суть дела в том, что предсказания, основанные на знании траектории, которая была определена до появления непренебрежимо малого возмущения, перестают после него сбываться, и это, конечно, неудивительно.
Рис. 2.6.Свободная частица, представленная здесь камнем, движется по некоторой траектории. В момент t=0 она характеризуется положением x и импульсом p. В последующий момент времени t=t´ она перемещается в новое положение, где подвергается наблюдению, на основе которого предсказывается её будущее движение. Однако спустя некоторое время в камень врезается птица. Предсказание, сделанное в момент t´, более не работает
Возмущение есть всегда
Квантовая теория фундаментально отличается от классической механики своей трактовкой понятий размера и экспериментального наблюдения, благодаря чему размеры становятся абсолютными. Дирак сжато сформулировал допущение, делающее размеры абсолютными.
Допущение: существует предел точности наших наблюдений и малости сопутствующих возмущений, предел, заложенный в природу вещей, который невозможно обойти за счёт усовершенствования техники или опыта на стороне наблюдателя.
Этот тезис категорически несовместим с классическим мышлением. Он утверждает, что, наблюдая (измеряя) систему, вы всякий раз вызываете возмущение — оно может быть мало, но оно всегда есть. Причём величина возмущения определяется самим устройством природы. Никакое усовершенствование инструментов, никакие новые методы наблюдения не позволят исключить или уменьшить это минимальное возмущение.
У тезиса Дирака есть следствия, которые включаются во все формулировки квантовой механики. Его допущение немедленно делает размеры абсолютными. Объект велик в абсолютном смысле, если минимальное возмущение, которым сопровождается измерение, пренебрежимо мало. Объект мал в абсолютном смысле, если его неустранимое минимальное возмущение не является пренебрежимо малым. На самом фундаментальном уровне классическая механика не приспособлена для описания объектов, малых в абсолютном смысле. В классической механике любой объект можно сделать «большим», найдя подходящий эксперимент для выполнения наблюдений. При разработке классической механики никогда не предполагалось, что в силу неотъемлемых свойств природы невозможно так усовершенствовать методику, чтобы наблюдения не меняли систему. Поэтому классическая механика неприменима к объектам, малым в абсолютном смысле. Неспособность классической механики работать с абсолютно малыми объектами, такими как электроны и атомы, является причиной, по которой её применение для описания подобных объектов приводит к ошибкам.
Рисунок 2.7 поясняет суть проблемы. Электрон — частица, малая в абсолютном смысле. (В дальнейшем мы подробно обсудим значение слова «частица», которое здесь отличается от классического представления о частицах.) В момент t=0 электрон движется вдоль траектории. Как и в случае с камнем, мы хотим выяснить, ведёт ли он себя так, как мы ожидаем, то есть позволяет ли он нам делать соответствующие предсказания. Воспользуемся методом наблюдения электрона, создающим наименьшие помехи: пусть он взаимодействует с одиночной частицей света — фотоном. (Далее мы подробно обсудим природу света и смысл, который вкладывается в понятие «частица света».) Вот чем эта проблема кардинально отличается от той, что показана на рис. 2.5.