I returned to Poland by train from Lillafüred, traveling through the Carpathian foothills. I had to change trains several times and remember sitting for a while on an open flat car with my legs dangling over the side as we went through small villages named Satorolia-Ujhely and Munkaczewo. This whole region on both sides of the Carpathian Mountains, which was part of Hungary, Czechoslovakia, and Poland, was the home of many Jews. Johnny used to say that all the famous Jewish scientists, artists, and writers who emigrated from Hungary around the time of the first World War came, either directly or indirectly, from these little Carpathian communities, moving up to Budapest as their material conditions improved. The physicist I. I. Rabi was born in that region and brought to America as an infant. It will be left to historians of science to discover and explain the conditions which catalyzed the emergence of so many brilliant individuals from that area. Their names abound in the annals of mathematics and physics of today. Johnny used to say that it was a coincidence of some cultural factors which he could not make precise: an external pressure on the whole society of this part of Central Europe, a feeling of extreme insecurity in the individuals, and the necessity to produce the unusual or else face extinction. To me the picture was that of the Roman poet Virgil, describing the flood: "In the big whirlpool there appear only a few remaining swimmers," surviving through intellectual frenzy and strenuous and vigorous work. A jocular version of survival is a story I told to Johnny who manufactured many variations. A little Jewish farm boy named Moyshe Wasserpiss emigrated to Vienna and became a successful businessman. He changed his name to Herr Wasserman. Going on to Berlin and to even greater success and fortune, he became Herr Wasserstrahl, then von Wasserstrahl. Now in Paris and still more prosperous, he is Baron Maurice de la Fontaine.
Eugene Wigner is one of the famous scientists from Budapest. He and Johnny were school friends and studied together for a time in Zürich. Johnny told me a nice story from those days: Eugene and Johnny wanted to learn to play billiards. They went to a café where billiards were played and asked an expert waiter there if he would give them lessons. The waiter said, "Are you interested in your studies? Are you interested in girls? If you really want to learn billiards, you will have to give up both." Johnny and Wigner held a short consultation and decided that they could give up one or the other but not both. They did not learn to play billiards.
Von Neumann was primarily a mathematician. Wigner is primarily a physicist, but also half a mathematician and brilliant user of mathematics, a virtuoso of mathematical techniques in physics. I would add here that he recently published an interesting article on the a priori unexpected effectiveness of mathematics in physics. Von Neumann's book on the foundations of quantum theory had more philosophical and psychological meaning rather than direct applications in theoretical physics. Wigner made many concrete contributions to physics, perhaps nothing quite as overwhelming as Einstein's ideas of relativity, but many important specific technical achievements and also something rather general — namely, the very fundamental role of group theoretical principles in the physics of quantum theory and the physics of elementary particles.
When von Neumann died, Wigner wrote a beautiful obituary article in which he described the deep despair that came upon Johnny when he knew that he was dying, for it was impossible for him to imagine that he would stop thinking. For Wigner, von Neumann and thinking were synonymous.
After this visit to Budapest it was time to prepare my return to Harvard. I had to go to the American consulate in Warsaw each summer I was in Poland to apply for a new visitor's visa in order to return to the United States. Finally, the consul said to me, "Instead of coming here every summer for a new visa, why don't you get an immigration visa?" It was lucky that I did, for just a few months later these became almost impossible to obtain.
Twice I made plans to travel across the Atlantic with Johnny. The year his marriage with Marietta broke up, we went to Europe together. I joined him on the Georgic, a small Cunard boat which took a week to cross. Johnny always traveled first class, so I went first class also, although usually I traveled tourist. As always, we discussed a lot of mathematics. We flirted with a young woman named Flatau, whom we found rather attractive. The day after we met her, I asked him: "Have you solved the problem of Flatau?" He liked the play on words. In mathematics there is the famous problem of Plateau: given a curve or a wire in space, the problem is to find a surface such that the wire is its boundary and of minimal surface area. It can be demonstrated with soap bubbles. If you immerse a closed curved wire in a soap solution, you get some nice surfaces spanning them. The man who first formulated and studied this mathematically was Plateau.
In 1939, my three-year appointment at the Society of Fellows was expiring. Unfortunately, it was not renewable because I had passed the upper age limit. Thanks to G. D. Birkhoff, I received an extension of the stay at Harvard in the form of a lectureship in the mathematics department. More permanent prospects were not promising; it seemed there were no vacant assistant professorships. Because of the influx of large numbers of German and Central European scientists, and in spite of Johnny's efforts on my behalf, things did not look much better in Princeton. Thus, I returned to America with an assured position for only one more year, accompanied this time by my younger brother Adam, who was not quite seventeen. With Adam in my charge, a sense of responsibility came over me. Our mother had died the year before, and the feeling of impending crisis had convinced my father that Adam would be safer in America with me. When he tried to apply for a visa, the American consul in Warsaw seemed to have reservations. It is only when I proved that I was living and teaching in the United States that he agreed to issue him a student visa.
Our father and uncle Szymon accompanied us to Gdynia, a Polish port on the Baltic Sea, to see us off on the Polish liner Batory. This was the last time we were to see either of them.
We were at sea when the announcement of the pact between Russia and Germany came over the ship's radio. In a state of strange agitation, I told Adam upon hearing the news, "This is the end of Poland." On a map in the ship's salon, I drew a line through the middle of Poland, saying, Cassandra-like, "It will be divided like that." We were, to say the least, shaken and worried.
At dinner on the first night, I suddenly noticed Alfred Tarski in the dining room. I had no idea he was on the boat. Tarski, famous logician and lecturer in Warsaw, told us he was on his way to a Congress on the Unity of Philosophy and Science to be held in Cambridge. It was his first trip to America. We ate at the same table and spent a good deal of time together. I still have an old shipboard photograph, which shows Adam, Tarski, and me dressed in dinner jackets ready for the gay American social life. He intended to stay only a couple of weeks and was traveling with a small suitcase of summer clothes. Because the war broke out shortly after we landed, he found himself stranded in the United States without money, without a job, and with his family — a wife and two small children — in Warsaw. For some time he was in the most precarious and terrible situation.