Выбрать главу

Следует прийти к выводу, что генетические программы заложенные в каждом из нас, чрезвычайно помехоустойчивы. Стабильность их определяется отнюдь не химической инертностью, а целым рядом особенностей структуры и специальными системами, которые отфильтровывают помехи или корректируют опечатки – как вам угодно – на каждом новом поколении клеток.

Первый из механизмов борьбы с помехами, самый простой, но не самый эффективный, – повторение, дупликация. Вспомним, что у каждого из нас в клетках по два генных набора, от отца и от матери.

Если в одном из них произошла мутация по важному гену, мы можем этого и не заметить: ген второго набора компенсирует мутацию и она в фенотипе не проявится, но только до тех пор, пока оба одинаково поврежденных гена не встретятся в одной оплодотворенной яйцеклетке. Вероятность этого повышается при близкородственном скрещивании. Недаром законодательства всех стран запрещают браки между близкими родственниками.

У полиплоидов геном напоминает тот разговор двух судовых радистов, о котором я уже вспоминал. Однако этот механизм очень уж прямолинеен и ведет к большим затратам и осложнениям. Практичнее дублировать не весь геном, а лишь наиболее важные его части. Так оно и есть, важнейшие последовательности ДНК представлены у высших организмов многими десятками, а то и сотнями копий, например те гены, в которых кодируются ядерные белки – гистоны. Примечательно, что многократно дублированы в основном не структурные гены, кодирующие белки, а регуляторные. Структурные гены в основной своей массе уникальны. Это имеет глубокий смысл: изменение каждого белка имеет шанс проявиться в фенотипе, чтобы пройти оценку на полезность в горниле эволюционных процессов. А вот регуляторные системы обязательно должны сработать, предоставить этот шанс структурному гену. Поэтому они должны быть многократно дублированы.

Рис. 34. Наверху – некоторые мутации глаз плодовой мушки дрозофилы. Генетикам очень повезло, что у нее, как и других двукрылых в клетках слюнных желез имеются гигантские хромосомы. Они поперечно исчерчены; каждая полоска в первом приближении соответствует одному гену. Удалось показать, что мутация Ваг, более чем вдвое снижающая число фасеток в глазу, обусловлена удвоением, дупликацией одного гена. Если же ген утраивается (мутация ультра-Ваг) фасетки практически редуцируются.

Этого мало. На заре эволюции, в эпоху становления генетического кода, триплеты ДНК кодировали аминокислоты, по всей вероятности, не столь жестко как сейчас. В результате возник весьма помехоустойчивый механизм кодирования аминокислот тройками нуклеотидов, особенности которого описаны советским биофизиком М. В. Волькенштейном. Можно сравнить принципы построения генетического кода с пишущей машинкой Остапа Бендера. Как вы, конечно, помните, машинка конторы по заготовке рогов и копыт имела кавказский акцент: у нее не было буквы «е», и ее пришлось заменять буквой «э» (…приложэниэ. Бэз приложэний). Почему же великий комбинатор заменил «е» буквой «э», а не какой– либо другой? Это всем понятно: подбиралась буква, наиболее близкая по звучанию. Другая бы искажала смысл слова.

Нечто подобное происходит при мутациях структурных генов. Генетический код устроен таким образом, что во многих случаях смысл триплета не изменяется (кодируется та же аминокислота) или изменяется незначительно. А что значит – незначительно? Снова грамматическая аналогия. Буквы бывают гласные и согласные. Аминокислоты и остатки их, слагающие белки, делятся на полярные и неполярные.

Отличаются они по взаимодействию с молекулами воды – полярные аминокислоты, такие, как лизии, гистидин, аргинин и другие, притягивают молекулы H2O, «смачиваются» водою. Неполярные аминокислоты, такие, как глицин или же аланин, более гидрофобны, они отталкивают молекулы воды и охотнее взаимодействуют друг с другом.

Чередованием полярных и неполярных аминокислот в белке определяется его третичная структура. Неполярные остатки слипаются друг с другом полярные взаимодействуют с водой и в результате образуется сложная форма, порой напоминающая творение скульптора-абстракциониста. С той лишь разницей, что она содержательна: строго соответствует выполняемой этим белком функции.

А что будет, если в результате мутации полярный остаток в белке сменится на неполярный (или наоборот)? Форма молекулы может измениться настолько, что белок не сможет выполнять свою функцию. Гемоглобин не будет связывать кислород, фермент не сможет ускорять химическую реакцию, и организм, носитель данной мутации, скорее всего, погибнет.

Тем, что это происходит относительно редко, мы обязаны хитроумному устройству генетического кода. Еще тогда, когда между аминокислотами в белке и тройками нуклеотидов в нуклеиновой кислоте не было жесткого соответствия (орфография еще не установилась!), эволюция отобрала наиболее помехоустойчивый вариант. Прочие конкуренции с ним не выдержали и сошли с жизненной арены.

Как справляется с помехами генетический код? Возьмем для примера какую-нибудь аминокислоту. Аланин в матричной РНК может кодироваться четырьмя символами:

ГЦУ, ГЦЦ, ГЦА, ГЦГ. Нетрудно сообразить, что любая замена третьей «буквы» в кодоне не изменит его смысла, в белок включится тот же аланин. Но есть и другие аминокислоты, кодируемые меньшим числом триплетов (например, аспарагиновая. и глутаминовая). Оказалось, что за исключением тех случаев, когда в результате мутации возникает бессмысленный кодон, полярность аминокислотного остатка не меняется. Значит, не изменится существенно и форма белковой молекулы, и ее пригодность для выполнения функции. Несмотря на ошибку, «прочесть» инструкцию можно. Чем не машинка Остапа Бендера?

В общем, из 526 возможных замещений (опять же не считая бессмысленных, обрывающих синтез белка), 364, более чем две трети, не меняют полярность аминокислотного остатка. Хуже, если мутация захватывает не один, а два, а то и три нуклеотида, но вероятность таких мутаций много меньше.

Но самое интересное я, как обычно, оставил под конец. Ведь и резервные гены, и особенности кодирования, снижающие эффект мутации, в конечном счете – пассивные средства борьбы с помехами. У генетических программ всех организмов, начиная с бактерий и кончая человеком, есть весьма действенные механизмы активной защиты. Такие процессы называются репарационными.

Репарация ДНК активно защищает генетическую программу клетки от повреждений. Рассмотрим один из ее механизмов на конкретном примере.

Ультрафиолетовые лучи – мощный мутагенный фактор. Наиболее часто они вызывают характерные мутации – сшивки двух соседних пиримидиновых оснований (Ц и Т). Такие сшитые основания не могут быть транскрибированы в мРНК, и процесс дупликации ДНК на них также кончается.

Рис 35. Организм активно защищает свои генетические программы от внешних воздействий. Допустим, на участке ДНК (1) возникло повреждение. Квант ультрафиолета, проникнув в ядро, вызвал сшивку двух соседних пиримидиновых оснований, возник димер тимина (2). ДНК с таким дефектом не может работать, синтезировать себя или РНК. Молекулы ферментов ДНК– и РНК-полимераз, дойдя до сшивки, застрянут на ней, как застревает замок застежки-«молнии», если в нее попала нитка. Но не все потеряно, на помощь приходят ферменты-репаразы. Эндонуклеаза «отстригает» поврежденный участок (3—4), а брешь в двойной спирали достраивается другим ферментом, ДНК-полимеразой, по оставшейся комплементарной нити-матрице. Достроенный отрезок пришивается к старой последовательности ферментом лигазой. Этот процесс также активируется светом, но более длинноволновым (300—600 нанометров). Так что, если хотите сохранить свои генетические программы в целости, не загорайте на пляже, а грейтесь у камина.