Выбрать главу

Итак, все вернулось на круги своя – к аристотелевской божественной идее о совершенном петухе и совершенной курице. Эпигенетики сняли с теории развития обветшавшие лохмотья преформизма и оставили ее обнаженной. Ведь нельзя же считать одеждой фиговые листки этих убогих «сил»! Удивительно еще, что игру в туманные натурфилософские идеи, стремления и силы считали объяснением. Корни этого заблуждения, по-видимому, в самой манере мышления, присущей натуралистам XVI, XVII и XVIII веков. Ее ядовито высмеял Мольер в «Мнимом больном», где врач объясняет действие опиума тем, что тот содержит «фактор усыпления». И это казалось достаточным. А что такое этот загадочный фактор, уже никого не интересовало.

Не будем, впрочем, свысока смотреть на естествоиспытателей прошлого. Еще в конце прошлого века Г. Дриш пытался воскресить концепции Аристотеля – вплоть до термина «энтелехия». Согласно Дришу, энтелехия не материальна и не является энергией, она стоит над клетками и тканями развивающегося организма.

Да и в наши дни физик У. Эльзассер утверждает, что существуют некие «биотонические законы», которые не выводятся дедуктивно из законов физики. Они-то и управляют развитием организма. Не будем на них останавливаться. Упомяну лишь беспощадный, но справедливый отзыв о эльзассеровских законах голландского эмбриолога Х. Равена: «Ощущаешь, что находишься на грани, если не в самой гуще, того пустословия, где витализм чувствует себя как дома».

Итак, и преформация, и эпигенез оказываются одинаково идеалистическими. Впервые это понял в 1763 году Иммануил Кант, изложивший свои соображения в сочинении под выразительным названием «Единственно возможное основание для доказательства бытия бога». Крупный французский натуралист и историк естествознания Флуранс объяснял в 1861 году возникновение теории преформации стремлением к экономии чудес. Если возникновение живого существа чудо, так уж лучше, чтобы оно произошло один раз, при сотворении мира, чем осуществлялось при каждом акте развития.

Еще в середине нашего века исследователи развития стояли перед небогатым выбором: абсурд теории вложенных друг в друга зародышей-матрешек или же витализм того или иного толка, в конце концов, сводимый к конечной причине Аристотеля. Помощь пришла неожиданно и из той области, откуда ее совсем не ждали.

Генетическая теория развития. Наше время – время «умных» машин. Думаю, каждый хотя бы из восторженных журналистских очерков знает об автоматических станках с программным управлением. Однако машина, выполняющая более или менее сложную работу согласно вложенной в нее программе, отнюдь не такая уж новинка. Уже в начале прошлого века существовали станки для набивки материи и вязки кружев, а также всякого рода музыкальные инструменты – механические органы, шарманки, механические пианино, выдававшие довольно сложные структуры в виде последовательностей узоров, рисунков и звуков разной тональности по программе. Программа в такие устройства вкладывалась в виде металлической или картонной пластинки с пробитыми в ней отверстиями. Так что перфокарта – совсем не достижение века кибернетики.

Со временем перфокарту сменила магнитная лента и считывающая с нее команды головка. Полагаю, и лента заменится в будущем какой– либо голографической пластинкой или же кристаллом, в котором будет записан огромный массив информации. В научно-фантастических романах такие устройства уже есть.

Какое же отношение станки с программным управлением могут иметь к проблеме развития организмов? Оказывается, самое прямое.

Крупный математик Джон фон Нейман, вместе с Норбертом Винером и Клодом Шенноном считающийся создателем новой отрасли знания – кибернетики, как-то задумался: возможно ли построить такую машину, которая, следуя заложенной в ней системе инструкций, построила бы точную копию самой себя? Иными словами, воспроизвести в металле биологическую смену поколений, построить саморазмножающийся автомат.

Согласно математическим выкладкам фон Неймана существует определенный порог сложности машины, ниже которого она не может воспроизводить себе подобных. Естественно, возникает вопрос: как объективно измерять степень сложности системы? Вопрос этот крайне важен, решение его понадобится нам и в будущем, поэтому самое время сейчас на нем остановиться.

Сложность системы измеряется количеством информации, потребной для ее описания. Наиболее распространена двоичная единица информации – бит (от английского binary digit). Столько информации содержится в ответе «да» или «нет» на какой-либо вопрос.

Например, любой ответ на вопрос: «Пойдете ли вы сегодня в кино?» – содержит один бит информации. А если ответов на вопрос больше двух, то есть больше выборов? Если выборы равновероятны, число битов в ответе равно двоичному логарифму (то есть логарифму при основании 2) из числа выборов.

Как этот принцип измерения информации использовать для оценки сложности описания системы? Возьмем классическое описание: «А ростом он мал, грудь широкая, одна рука короче другой, глаза голубые, волосы рыжие, на щеке бородавка, на лбу другая».

Описание очень краткое и годится только для опознавания системы «Гришка Отрепьев», но в принципе его можно сделать сколь угодно более детальным, вплоть до того, чтобы эту систему можно было воссоздать (нужно ли воссоздавать Лжедмитрия – это уже другой вопрос). Забавы ради я подсчитал, что в описании содержится около 12 бит информации.

Иными словами, дьяк сыскного приказа должен был задать 12 вопросов и получить на них 12 ответов «да» или «нет» чтобы это описание составить.

Спешу оговориться, что мои подсчеты отнюдь не так точны, как хотелось бы. Так я исходил из того, что цвета волос (черный, русый, светлый, рыжий, седой и отсутствие волос) равновероятны. Тогда информация была бы равна log26. На деле это далеко не так. Мы не знаем, с какой частотой встречались рыжие на Руси в эпоху Бориса Годунова. У черноволосых китайцев рыжие волосы настолько редки, что Сунь Цюаня, одного из героев эпохи Троецарствия, иначе и не называли, как «голубоглазый и рыжебородый отрок». И сразу было ясно, о ком идет речь. А в Шотландии этот признак довольно неинформативен: нигде я не видел столько рыжих, как на улицах Эдинбурга.

Так что, строго говоря, надо для оценки количества информации пользоваться формулой

H = – ∑Pi log2 Pi

то есть количество информации равно сумме произведений вероятности встречаемости элемента на двоичный логарифм этой вероятности. Так, если вероятность встречаемости рыжего цвета волос 0,1 – (каждый десятый рыжий), то ответ на вопрос о цвете волос дает 0,3322 бита информации. А будь рыжими все (вероятность Р = 1), H была бы равна нулю (логарифм единицы равен нулю).

Вот так в битах информации фон Нейман оценил сложность системы, способной воспроизводить самое себя. Она оказалась довольно большой – порядка миллиона бит, то есть система должна была бы состоять не менее чем из десяти тысяч элементов. Это очень сложная система, современные станки с программой на магнитной ленте много проще.

Но, допустим, мы создали такую машину, ввели в нее ленту с программой для постройки дочерней» машины и запустили ее. Воспроизвели бы мы в металле смену поколений?

Оказывается, нет. «Дочерняя» машина будет бесплодной: ведь в ней нет ленты с программой. Чтобы появилось третье машинное поколение, в машине-родоначальнице нужно предусмотреть лентокопирующее устройство, передающее по наследству копию программы. Итак, согласно Нейману, по наследству передается не структура, а описание структуры и инструкция по ее изготовлению. И весь процесс развития состоит из двух раздельных операций – копирование этой программы (того, что генетики называют генотипом) и постройка собственно организма (того, что они называют фенотипом).