Настаивая на эмпирическом обосновании понятия вероятности и отбрасывая классическую теорию из-за отсутствия такого обоснования, частотный подход Мизеса оказался неспособным удержать то положительное, что нес в себе классический подход. Оно состояло в следующем. Неявным образом при определении вероятности принимались во внимание определенные свойства индивидуального объекта, характеризующие набор объективных возможностей его поведения в испытании (например, однородность строения, симметрия и т.п.). Благодаря этому в известном смысле обоснованным становилось приложение классической теории к реальным сериям испытаний.
Следует заметить, что эта сторона классического подхода обычно остается в тени. Более того, вместе с принципом недостаточного основания, символизирующим субъективизм и априоризм данной концепции, отбрасывают самую идею «равновозможности» как исходный пункт истолкования вероятности. Между тем, эту концепцию, если придавать «равновозможности» объективный смысл, нельзя рассматривать как полностью преодоленный этап. Скорее правы те авторы, которые считают, что теоретическое истолкование вероятности на базе данного понятия не исчерпало себя полностью. Так, А.Я.Хинчин, разбирая в одной из своих статей пример Мизеса с неправильной костью, показывал, что противопоставление данного случая идее равновозможности не оправдано, если исходить из некоторых топологических представлений[16].
Поставленный выше вопрос о возможности эмпирических предсказаний на основе теории Мизеса непосредственно связан с так называемой проблемой тестификации вероятностных суждений (проблемой их эмпирических испытаний). Сложность ее решения в рамках данной концепции вытекает из нечеткости ее базовых понятий.
В самом деле, если рассматривать классы, связываемые посредством отношений частот, как бесконечные, тогда ни одно конечное число экспериментов не в состоянии ни полностью подтвердить, ни полностью опровергнуть вероятностное суждение, ибо частотный подход не имеет каких-либо разумных средств ограничения требования иррегулярности. Теоретически здесь нельзя исключать факта, что любая конечная серия проведенных экспериментов может оказаться лишь флюктуацией с каким угодно большим отклонением относительной частоты в данной серии от относительной частоты во всем бесконечном классе. Между тем, на практике прогнозы по конечным наблюдаемым сериям являются обычным делом.
Концепция Г. Рейхенбаха. Она имела логикогносеологическую направленность. Г. Рейхенбах, разрабатывал идею вероятностной логики для характеристики сложных ситуаций. Он показал, что высказывания о таких ситуациях можно рассматривать как многозначные, и это навело на мысль о возможности многозначной, в отличие от двузначной, логики, использующей всегда два истинностных значения. В качестве значения истинности в своей новой логике он принимал значение вероятности. Одновременно он принимал постулат, что высказывания многозначной логики могут быть переведены в высказывания двузначной логики (если вероятность равна 0 или 1)[17].
Вероятностные суждения, согласно Рейхенбаху, не могут быть сообщениями, как обычные предложения в рамках строгой логики (т.е. стоять в однозначном соответствии с наблюдаемыми фактами). Наоборот, они могут лишь соответствовать некоторой последовательности фактов, в зависимости от того, делают эти факты данное высказывание более или менее вероятным[18]. Одновременно, по его мнению, можно говорить и о том, что факт тоже устанавливает в свою очередь последовательность вероятностных высказываний в зависимости от большего или меньшего их соответствия факту. Именно поэтому, писал Рейхенбах, можно говорить о вероятности события так же, как о вероятности высказывания. Тут дело, дескать, только в терминологии.