В самом общем плане это означает, что статистическая форма описания явлений должна была получить еще свое оправдание в существенных чертах и признаках закономерности. В такой постановке данная проблема касается по существу вопроса о статусе вероятностно-статистических закономерностей, разработка которого до настоящего времени носит весьма дискуссионный характер [37].
В ходе длительной дискуссии многие ее участники ограничивались сравнительно узкой постановкой вопроса, а именно: элиминирует ли статистический тип закономерности традиционно признаваемый классической наукой динамический тип закона? В тесной связи с этим вопросом ставился также другой: является ли однозначность атрибутивной характеристикой закона вообще? Их взаимозависимость выявляется, скажем, в том обстоятельстве, что из тезиса об однозначности и строгой определенности закономерности нередко выводилось отрицание объективного и универсального содержания статистических закономерностей.
Как это часто принято в теоретическом познании, автор намерен обратиться, прежде всего, к тем исходным идеализациям, которые используются при формировании закономерностей того и другого типа, и сопоставить последние под углом зрения их направленности на решение задач системного анализа.
С формальной стороны различие между динамическими и статистическими законами состоит в том, что математическое выражение статистических закономерностей опирается на понятие вероятности. Тогда как динамические законы описываются в форме дифференциальных уравнений, либо однозначных функциональных зависимостей. Учитывая это обстоятельство правомерно говорить о поэлементном подчинении динамическим законам всех объектов некоторой рассматриваемой совокупности. В качестве таких элементов часто рассматривают состояния изменяющего во времени материального явления или процесса. Кроме того, в случае динамических законов говорят о жестко детерминированном, строго определенном характере этого подчинения.
В абстрактно-математическом плане статистическая форма зависимости для некоторой упрощенной ситуации также может быть выражена в виде функции. Однако таковая обладает рядом специфических особенностей, важнейшие из которых, например, в свое время М.Смолуховский определил следующим образом; Если статистический закон представить как функцию y=f(x), то должны выполняться такие указания: 1) небольшие изменения «X» в общем вызывают большие изменения «У»; 2) совокупности таких группировок «X», которым, приблизительно, соответствует одна и та же группировка значений «У», неизмеримо более многочисленны, чем совокупность группировок «X», которым соответствует заметно отклоняющееся распределение значений «У» [38].
Очевидно, что первое из названных свойств выводит данную функцию из класса таких, для которых приложим принцип: ограничение приращения аргумента ограничивает область изменения функции. Следовательно, статистическая зависимость не может быть описана в дифференциальной форме, поскольку здесь неприложимо математическое понятие предела. Второе же свойство подчеркивает новый тип устойчивости, обнаруживаемый у данной функции, для выражения которой необходимо учитывать массовость рассматриваемого явления.
Отмеченный здесь характер соответствия между изменениями аргумента «X» и функции «У» совпадает, по существу, с требованием непрерывности вероятностной функции распределения начальных данных. На этот признак указывали, например, А.Пуанкаре и Г.Рейхенбах [39]. Смысл названного требования состоит в том, что при общей устойчивости некоторого комплекса начальных условий реализации данного явления из него нельзя исключить факторы, обуславливающие вариации отдельных элементов массового явления. Ибо эти факторы невозможно изолировать или проконтролировать. Тем самым, в своем качественном содержании, уже простейшая теоретическая модель статистической закономерности ориентирована на принципиальную неизолированность изучаемого явления. А это представление, в свою очередь, сопряжено с отказом от поэлементного рассмотрения цепей подчинения, т.к. признание требования непрерывности вероятностной функции распределения начальных данных делает излишним поиск, выделение какого-либо отдельного возмущающего фактора, приводящего к разбросу значений элементов совокупности. Все такие факторы из группы возможных оказываются равновероятными.