Выбрать главу

Опровержением тезиса Гегеля о пустоте класса формальных возможностей и об отсутствии у таковых познавательной ценности является также состояние дел в современной науке, где появилась обширная область, имеющая непосредственное отношение к возможностям данного типа. Прежде всего, это математика и математическая логика. Скажем, одним из важных условий конструирования математических объектов выступает понятие «непрерывности». Широко используется также понятие «потенциальной осуществимости», имеющее особую значимость в теории алгоритмов и теории конечных автоматов, где требуется показать, что некоторая конечная последовательность операций приведет к решению.

В равной мере соотнесенность с законами служит определением для абстрактной возможности, которую правомерно рассматривать в качестве иного, в сравнении с формальной, уровня возможности. Таковая относится к некоторой конкретной области действительности и ее законам.

Специфической особенностью абстрактной возможности является характер ее связи с необходимостью и, вместе с тем, способ ее реализации в действительность. С точки зрения реализуемости, т.е. необходимости и действительности, она опосредуется случайностью. И в этом плане состоит важное отличие абстрактной возможности от необходимости.

Необходимое предполагает полноту всех моментов своего содержания, каковыми выступает все богатство сторон действительности. Развертывание одной действительности из другой само представляет действительный процесс, конкретизируемый и получающий свое определение в универсальных связях и взаимодействиях. Но в силу этого справедливо утверждение, высказанное еще Гегелем, что необходимое опосредуется самим собою, т.е. необходимым же [70]. Между тем, абстрактная возможность представляет в некотором роде лишь частичную необходимость, обусловленную неполнотой, незавершенностью, неразвитостью ее собственного содержания.

Налицо, таким образом, как бы два вида необходимости. Одна из них есть получившая всестороннее определение и конкретизацию развитая действительность, т.е. такая, которая раскрыла себя и представлена своей результативной стороной. Другая же обладает моментом неопределенности в отношении результата, поскольку потенциальному движению ее содержания сопутствует момент внешности, условности, случайности.

Сказанное можно естественным образом интерпретировать в терминах системно-структурных представлений. Показательно, что имея некоторый набор элементов, допустимо связывать с ним множество возможных систем, «построенных» из этого набора. Как отмечал Б.В. Ахлибининский, при учете свойств самих элементов круг возможностей зависит лишь от данного типа связей между ними. Соответственно этому как бы предопределяется вероятность каждой из возможных систем свойствами исходных элементов [71]. Однако, на реализацию того или иного типа связей в общем случае оказывают существенное влияние также свойства внешних условий. Здесь можно привести простой пример, когда из множества возможных электрических схем, создаваемых свойствами элементов, которые обеспечивают нормальную работу схемы, выбраковывается значительная группа в силу, скажем, несоответствия температурному режиму окружающей среды (недостаточная температурная стойкость элементов может привести к разрушению схемы).

Очевидно, что в данном случае принятие во внимание внешних условий сужает границы абстрактной возможности, сводя меру реализации, существования некоторых из них к нулю. В качестве такой меры выступает понятие вероятности.

Глубокий гносеологический смысл введения в науку понятия вероятности состоит в том, что оно оказывается средством перехода к конечности в сфере возможного. Вообще говоря, абстрактная возможность благодаря открытости отношения к условиям «внешности» представляет собой неисчерпаемую область, если при этом учитывается также неисчерпаемость свойств элементов некоторого рассматриваемого содержания. Как мы уже видели, задание, фиксация свойств элементов ограничивает область возможного типом связей между ними. Но для качественного различия возможностей этого недостаточно, поскольку здесь каждая из них оказывается как бы предопределенной и ставится в этом смысле в одинаковое отношение к необходимости, так, что смазывается, утрачивается в известном плане собственно возможная природа возможности.

Для выражения реального неравенства между возможностями и выделения их качественной специфики служит понятие вероятности.

Особенность этого понятия, трактуемого с точки зрения возможности, состоит в том, что оно является формой саморефлексии возможности, т.е. выражает возможное в возможном. Однородность, однопорядковость вероятности и возможности служит основанием для введения ее в качестве меры самой возможности, а тем самым и перехода к конечности в данной области. Здесь складывается точно такая же ситуация, как и в случае выявления количественной стороны в любой иной сфере действительности. Скажем, в области пространственно-временных отношений мерой выступает известным образом упорядоченная пространственно-временная структура. Например, вводится представление о метрике пространства, отражаемого некоторым набором свойств.

Разумеется, способ упорядочения возможностной структуры иной, нежели для пространства-времени. Наглядным свидетельством тому является весьма специфический факт замкнутости значений вероятности в интервале от 0 до 1. На эту сторону дела в нашей литературе меньше всего обращают внимание. Между тем ее рассмотрение весьма полезно для понимания соотношения вероятности, возможности и необходимости. В данной связи в высшей степени интересными представляются некоторые наблюдения и выводы, содержавшиеся в известной статье Г. Фройденталя «Существует ли специфическая проблема применения вероятностей?» [72].

Выделяя среди математических понятий большую группу простых переменных, Г.Фройденталь называл их величинами. Последние он разделял на три класса.

Первый класс. Он допускает точный подсчет без какой-либо ошибки (т.е. их можно измерить в дискретном монадическом атомическом ряде).

Эти величины он называл качествами. Их различные значения отделяют их друг от друга как вполне самостоятельные качества. Суть процесса измерения качеств совпадает по Фройденталю с процессом ответа на разделительный вопрос.

Этот метод применим там, где объект измерения явно разделен на подклассы, дискретен в смысле, например, наличия альтернатив. Тогда измерение есть последовательный перебор альтернатив, что способно задать меру объекта. Измерение качеств отличается от измерения количеств в особенном их смысле.

Количество имеет более или менее непрерывный характер. Его можно измерить с произвольно малыми ошибками путем детализации масштаба. Но уже на каждом этапе можно задать точно границы возможного значения величины, а тем самым переход к следующему этапу опирается на знание качества.

Третий род величин. Их измерение с какой-либо точностью в строгом смысле этого слова недостижимо. Но невозможность избежать ошибки не является препятствием для работы с этими величинами, в том числе и в экспериментальной области. С этой целью обращаются к предположению о количестве ошибки (в смысле степени, величины ее). Такие предположения не претендуют на строгую точность. Отсюда термин для данного рода величин - предположительности. К их числу относится вероятность, а также интеграл экспериментальной функции. [73]