Выбрать главу

Высказывалась также иная точка зрения, согласно которой «система» представляет из себя упорядоченную совокупность связей и отношений в их отвлечении от элементов. А в понятие «структура» включают кроме того исследование составляющих, носителей отношений, т.е. элементов [141].

На мой взгляд, выработка согласованного мнения по данному вопросу требует учета тех реальных познавательных задач, которые сопутствовали становлению системного подхода. Разумеется, можно по-разному обыгрывать смысловые оттенки терминов «система» и «структура», используя этимологическое богатство этих слов в русском языке, а также наличие ряда тенденций их понятийного употребления в научном и философском познании. В рассматриваемом же случае речь идет о подходе, выделяющем в качестве своего предмета сложные в смысле поведения и детерминации объекты и осуществляющем поиск средств их описания и объяснения. А это накладывает определенные ограничения на содержание рассматриваемых понятий. Здесь важно учитывать развитие современных представлений о сложности, составляющих ядро системных идей и методов.

Традиционно атрибут сложности получал свое определение в терминах агрегатности, комплексности, дифференцированности и т.д. Соответственно этому под системой на интуитивном уровне понимается просто дифференцированный объект. В классических областях знания такое истолкование принималось почти безраздельно, и оно оказало сильнейшее влияние на формирование методов эмпирических наук.

Начиная с XX века в это понимание внесено нечто новое. Сохраняя признак дифференцированности, комплексности и т.д. в качестве важного момента системности, основное содержание понятия «система» связывают с понятием «целостности» и производным от него понятием «эмерджентности».

Последнее характеризует несводимость параметров и свойств системы и ее элементов, т.е. исключает наличие между ними простой функциональной зависимости. В данном отношении показательны, например, позиции Берталанфи и Эшби, разобранные выше.

В этом пункте отчетливо обнаруживался надмеханический смысл современных системных представлений, влекущий за собой важный сдвиг в постановке исследовательских задач. Известно, что механическая трактовка понятия «система» сочеталась с идеей простой рядоположенности элементов в рамках целостности, вследствие чего становилось возможным толковать целостность и сложность системы как «суммированную простоту». А это служило основанием методологического требования «разделения факторов по одному» при изучении сложных явлений, которое нашло свое логическое оформление в «правилах индукции» Дж.-Ст.Милля. Соответственно для описания таких систем использовался математический аппарат независимых переменных. Напротив, новый подход ориентирует на определенную упорядоченность элементов, на существование между ними связей или отношений, для выражения которых широко используется понятие «структура».

Надо полагать, что существенные стороны системных представлений и, вместе с тем, собственно системной методологии не исчерпываются рассматриваемыми здесь характеристиками. Процесс их выявления продолжается. И именно в плане раскрытия новых аспектов сложности и, соответственно, системности весьма перспективным кажется обращение к вероятностно-статистическим представлениям и методам, к анализу того специфического содержания, которое делает названные методы мощным инструментом исследования различных форм сложного поведения широкого класса систем. Более подробно этот вопрос обсуждался в моих ранее опубликованных работах. Ссылки на них имеются в Примечаниях.

Возвращаясь к понятию «структура», следует отметить, что оно выполняет важную роль в реализации той гносеологической установки, которая определяется представлением о сложном объекте. С этих позиций представляется вполне оправданной трактовка понятия «структура» как закона, способа связи элементов системы (Свидерский В. И.). В этом понятии фиксируется тот механизм синтеза свойств и характеристик элементов, интегральным эффектом, которого являются свойства и характеристики целостной системы.

Здесь уместно подчеркнуть, что понятие «структура» важно рассматривать в контексте общей динамики научного познания. В отечественной литературе наряду с пониманием структуры как закона, способа связи элементов давались и иные определения этого понятия. На этом поприще обозначились точки зрения, высказанные в свое время Афанасьевым В.Г., Грушиным Б.А., Кузнецовым И.В., Овчинниковым Н.Ф., Сержантовым В.Ф., Шаумян С.К. и некоторыми другими.

Не углубляясь в дискуссию по поводу формулировок понятия «структура», отмечу, что с гносеологической точки зрения большинству из них можно поставить в соответствие некоторый аспект системно-структурного подхода, реализующегося в практике научного исследования, и тем самым доказать их правомерность. Однако постановка фундаментальных задач в специальной литературе убеждает в том, что на первый план выдвинулись проблемы, связанные с характеристикой перехода от внешнего уровня системы к внутреннему и, наоборот, от внутреннего к внешнему. Эта сторона дела обнаруживается, например, при рассмотрении двух основных задач теории конечных автоматов - анализа и синтеза [142]. Подобная ориентированность системного подхода находит достаточно адекватное выражение в одном из приведенных выше значений понятия «структура».

Я имею в виду представление о структуре как законе, способе связи элементов. Оно нацеливает на тот тип целостностей и, соответственно, систем, для которых в значительной степени характерно проявление порядка, обеспечивающего определенную полноту и замкнутость циклов системы. В отношении элементов это означает, что возможно выделение фиксированного круга их назначений или функций. В предельном случае каждый из них обнаруживает лишь одно какое-либо назначение или направление собственной активности. С таким случаем имеют дело, например, в большинстве задач классической механики. Здесь налицо жесткий и однозначный порядок, принятие которого в теоретических конструкциях редуцирует представление о функции до понятия такой связи, которая исключает, по существу, активность элементов.

Показательно, что постановка большинства проблем собственно системного подхода в современной науке связана как раз с учетом активности систем и их элементов [143]. И здесь весьма важным оказывается развитие представления о структуре до понятия «функциональная структура», которое соотносится с понятием «элемент», приобретающим смысл некоторого поля выбора или «функции».

Возник, однако, вопрос о соотношении понятий «функциональная структура» и «вещественная структура», о границах их совпадения. В истории науки он поднимался неоднократно и в самой различной форме. Широко известна, например, дискуссия в биологии о взаимосвязи морфологического строения органов и их функций. В последующее время он стал весьма актуальным в области проблем кибернетического и бионического моделирования. Его истоки коренятся в фактах полифункциональности ряда вещественных структур (например, органов), а также в смене функций одной и той же структуры.

Для истолкования несовпадения и подвижности относительно друг друга вещественной и функциональной структур полезно обратиться к понятию «целостность». Я придерживаюсь точки зрения, что важным аспектом целостности систем является слитность, связность элементов, неавтономных в некотором общем дня них всех отношении, в результате чего складывается определенная замкнутость и завершенность. Однако этот аспект не исчерпывает содержание реальных целостностей, поскольку в действительности элементы той или иной целостности входят в нее лишь некоторыми своими характеристиками, сохраняя в известной мере автономность, что выводит элемент за рамки «функционального единства».

Согласно этой позиции важно признать двойственную природу элемента, которую необходимо выразить соответствующим образом в понятии. Следует различать элемент как вещный субстрат, обладающий собственной природой, в силу чего он оказывается способным включаться в разнообразные структурные образования. Но элемент надо понимать еще и как функциональный узел связи. Элемент, понимаемый во втором смысле, обладает относительной независимостью от вещного субстрата. Это имеет место, например, в так называемых «открытых системах» органического мира, для которых характерны процессы непрерывного ввода и вывода вещества и энергии при сохранении самого существования системы.