Следовательно, произвольная совокупность явления или факторов, выбранная, скажем, лишь по признаку пространственной смежности, не может служить основанием для применения статистических методов исследования. Одновременно можно утверждать, что чисто формальное объединение случайных событий, опосредованное их принадлежностью к видам значений случайной величины, имеет тот глубокий смысл, что основывается на учете признаков или параметров более абстрактного и фундаментального уровня. Часто использовавшийся в науке пример с игральной костью демонстрировал такое обращение к обобщенным параметрам, на базе которых складывается единство случайных событий, - к симметрии в строении кубика.
Исследование истории науки показывает одну важную особенность теоретико-вероятностной модели обобщения. Она проявляется в том, обобщение достигается опосредованным путем, поскольку переход от признаков элементов к признакам совокупности предполагает использование структурных характеристик целого, задаваемых вероятностным распределением. Точка зрения целостности, устойчивой общности массового явления выступает в статистическом исследовании исходным пунктом и предпосылкой. Собственно случайные события получают свое определение не в единичных, поэлементных характеристиках, но напротив, как представители некоторых подмножеств или классов. Тем самым, следует признать, что существенное содержание статистического подхода нельзя ограничивать категориями единичного и случайного. Более правильным будет утверждение, что оба названных момента выступают в статистической зависимости в качестве подчиненных, поскольку на передний план выдвигается момент целостности определенного множества случайных явлений.
Со своей стороны добавлю, что признание случайности в отдельных явлениях присуще в известном смысле и нестатистическому исследованию. Речь идет о том подходе, когда ограничиваются чисто поэлементным рассмотрением, когда каждое явление из данной совокупности выступает единичным объектом анализа.
В противовес статистическому подходу здесь отыскивают устойчиво общее, которое имеет значение для всякого отдельного элемента, и лишь на этой основе утверждается устойчивость и самого множества. Очевидно, что в таком случае исходят из представления об однопорядковости параметров, свойств или характеристик отдельных элементов и всей совокупности.
В то же время, сами статистики давно осознали, что в статистическом исследовании заранее принимается во внимание подвижность, вариативность собственных признаков каждого объекта совокупности. Так что поэлементный переход от одного к другому оказывается неосуществимым. В силу этого статистическая закономерность, описывая устойчивость на уровне целостности, не предписывает распределения общего признака среди всех элементов множества. Например, для случая с правильной игральной костью описание ее поведения посредством задания вероятностей выпадения каждой грани не означает, что эмпирическое испытание обязательно даст выпадение всех граней и что мощность подмножеств, соответствующих каждому признаку, будет совпадать с теоретически предвычислимой.
Эта особенность статистической закономерности демонстрирует, как справедливо отмечал Ю.В.Сачков, такой способ обобщения, когда исходные и обобщенные параметры являются разнопорядковыми, относятся к различным уровням кодирования информации об объекте.
Ю.В.Сачков показал, что вероятностно-статистическое описание связано с выделением двух классов параметров сложного объекта, относящихся к различным уровням его организации. «Характеристики первого, исходного уровня, - те, которые постоянно и независимо изменяют свои значения при переходе от одного элемента к другому в исследуемом массовом явлении и соответственно каждое из значений которого рассматривается как случайное событие» [41].
Иначе говоря, поставленная в рамках детерминизма проблема неоднозначности получает свое истолкование в концепции уровней кодирования. Существенным здесь является тот факт, что признание неоднозначности зависимостей (взаимообусловленности) элементов некоторой совокупности имеет своей оборотной стороной признание их автономности. В такой ситуации зависимость элементов приобретает дополнительные характеристики, которых не знала классическая наука и которые выражаться понятиями интенсивности, тесноты, уровней, функциональности этой зависимости и т.д.
Полезно отметить, что указанная выше особенность вероятностно-статистического обобщения представляет собой новое научное средство выражения гибкости объективного мира. Причем, основное идейное содержание данного способа обобщения совпало с кругом идей формирующегося в ту же эпоху системного подхода, который был ориентирован на разработку средств выражения структурно-функциональной динамики и сложности материальных систем.
Наука и практика, начиная с середины XX столетия, столкнулись с ситуацией, которая получила свою оценку в терминах «сложность» и «неопределенность». В целом ряде научных областей было признано, что сложность не сводится к учету множественности составных элементов материального объекта. Пристальное внимание привлек еще один аспект сложности. Он выявился в разнообразии взаимодействий данного объекта как целого со своим окружением. И эти взаимодействия несут на себе печать неопределенности, поскольку всегда имеют открытый характер. Для теоретического описания подобной ситуации стали привлекаться такие концептуальные формы, которые, сохраняя рационализм, давая вполне определенную картину явлений действительности, могли бы учитывать ее гибкую и неопределенностную природу.
Теперь в центр внимания науки передвинулись вопросы, касающиеся изучения целостностей, демонстрирующих гибкость и неопределенность связей и взаимодействий с окружающей средой. И с этого момента во весь рост встала задача нахождения способов выражения структуры сложных целостностей. Статистический тип закона благодаря использованию языка вероятностных распределений послужил как раз моделью такой структуры.
Здесь я говорю об идейном родстве вероятностно-статистического и системного подходов. Но оно нашло свое проявление также в реальной истории науки. На протяжении многих десятилетий пути их формирования проходили в тесной зависимости друг от друга.
Наглядным подтверждением тому является становление молекулярно-кинетической теории теплоты, в рамках которой природа термодинамических систем получила статистическое истолкование. Одновременно развитие физической теории в этом направлении привело к переформулированию ряда однозначных (динамических) законов посредством терминов вероятности (например, больцмановское статистическое истолкование закона энтропии). Смысл подобной переформулировки состоит в том, что некоторые интегральные характеристики термодинамических систем (температура, теплоемкость, энтропия и т.д.) оказались выводимыми из характеристик более глубокого уровня посредством статистического приема обобщения. Наиболее развитый аппарат такого вывода или перехода был предложен теорией так называемых «статистических ансамблей» Гиббса.
Современные исследования в области теории информационных систем также показали важность применения статистики для раскрытия природы информации. Например, Н.Винер писал: «...для господина Бигелоу и для меня уже стало очевидным, что техника управления и техника связи неотделимы друг от друга и что они концентрируются не вокруг понятий электротехники, а вокруг более фундаментального понятия сообщения... Сообщение представляет собой дискретную или непрерывную последовательность измеримых событий, распределенных во времени, т.е. в точности то, что статистики называют временным рядом» [42]. И несколько далее он продолжал: «Приняв определенную статистику для временного ряда, можно найти явное выражение для среднего квадрата ошибки предсказания при данном методе и на данное время вперед. А располагая таким выражением, мы можем свести задачу оптимального предсказания к нахождению определенного оператора, при котором становилась бы минимальной некоторая положительная величина, зависящая от этого оператора» [43]. Здесь существенным оказалось признание принципиального значения статистического характера сообщения для получения определенного предсказания или информации.