Рано еще строить догадки об исходе сражения между Бором и Эйнштейном. Не дано нам пока знать, окажутся ли в конце концов инстинктивные предчувствия Эйнштейна достаточно хорошо обоснованными, пусть даже самым неожиданным образом, или нет. Решающее слово принадлежит непредсказуемому будущему.
А вот то мнение, которое складывалось во времена Эйнштейна, было явно против него. Да, именно он расширил введенное Планком понятие кванта, на что не решился никто, включая и самого Планка; да, это его новаторские идеи о квантах с самого начала были решающим фактором, обусловившим признание этого понятия; да, не кто иной, как он, приветствовал революционные представления де Бройля, вдохновившие Шредингера; безусловно, он был на переднем фронте всех новых научных веяний; это он был тем самым дальновидным творцом новых тенденций в этих веяниях, когда будущее казалось всем погруженным во мрак; и вот теперь адепты квантовой механики считают его старомодным консерватором — чем-то вроде гения в отставке, который ведет тщетную борьбу против неизбежной революции, затрагивающей самые основы науки.
Подобное отношение со стороны физиков легко объяснимо. Смелые нововведения Эйнштейна в области квантов были поглощены новой квантовой механикой, и с появлением этой теории роль Эйнштейна во всем, что касалось квантов, свелась единственно к роли критика. Восторженным поклонникам новой теории легко было обращать критику Эйнштейна против него самого, забывая при этом, какое важное значение она имела для совершенствования копенгагенской интерпретации. Созданная Эйнштейном общая теория относительности возвысила его до уровня Ньютона. Однако в отличие от специальной общая теория относительности была ни к чему специалистам по атомной физике. Ее немногочисленные приложения относились скорее к Вселенной в целом, нежели к области лабораторного экспериментирования; и чем больше углублялся Эйнштейн в эту теорию с целью дальнейшего ее обобщения, тем дальше она уводила его от непосредственных задач, стоявших тогда перед атомной физикой. Его отъезд из Европы в 1933 г. и переход в Институт высших исследований, а также относительная изоляция, к которой он намеренно стремился, поселившись в Принстоне, еще больше усилили его оторванность от актуальных проблем физики. И все же, несмотря на то, что его влияние среди физиков становилось все меньшим, для широкой публики он по-прежнему оставался верховным оракулом и символом науки.
Тем временем в Европе близились к развязке важные события как научного, так и политического характера. В 1919 г., еще будучи в Манчестере, Резерфорд обнаружил, что при сильном столкновении ядер гелия и азота они могут превратиться в ядра водорода и кислорода; таким образом, произошло превращение хорошо известных нерадиоактивных и до того считавшихся неизменными ядер. Совершенно очевидно, что это открытие имело большое значение. В то же время оно казалось достаточно безобидным. Из-за микроскопических масштабов рассматривавшихся Резерфордом явлений — как- никак эксперименты проводились с отдельными атомами — оно пользовалось куда меньшим вниманием публики, чем другое — главное — научное событие 1919 г., а именно подтверждение Эддингтоном общей теории относительности Эйнштейна в результате наблюдения солнечного затмения.
Однако с течением времени открытие Резерфорда приобретало все больший вес. Была открыта способность к превращениям и у ядер других атомов, считавшихся ранее устойчивыми. В 1932 г. в Кавендишской лаборатории в Кембридже, директором которой был Резерфорд, результаты отдельных ядерных трансмутаций впервые четко подтвердили правильность эйнштейновской формулы Е = тс2. Это произошло спустя четверть века после того, как Эйнштейн вывел свою формулу в 1907 г. В следующем, 1933 г. было получено еще более четкое ее подтверждение — на этот раз масса уже не частично, а полностью преобразовывалась в энергию[39].
Итак, не оставалось более сомнений в том, что интуиция не подвела Эйнштейна и что масса представляет собой огромный резервуар энергии. Не так много энергии выделяется при сжигании унции угля. Унцию же песка мы даже не в силах сжечь. И тем не менее в одной-единственной унции угля, или песка, да и вообще чего угодно скрыто такое количество энергии, которое эквивалентно энергии, получаемой при сжигании буквально тонн угля. Нескольких тонн. Фактически сотен тысяч тонн или около того. Можно ли раскупорить этот резервуар, чтобы использовать заключенную в нем энергию для практических целей? Интересно, что и Резерфорд, и Эйнштейн такую возможность отрицали. Извлечение энергии из массы, заключенной в атомных ядрах, было, с их точки зрения, в высшей степени пустой затеей: на это пришлось бы затратить энергии куда больше, чем ее было бы получено.
39
Эта удобная формулировка, хотя она и стала привычной, может ввести в заблуждение. Когда говорится, что «масса переходит в энергию», то после этого перехода массы ровно столько же, сколько было до него. Первоначально имеется масса покоя, которая как бы захвачена в плен. Затем часть ее или вся она высвобождается и становится массой в виде энергии движения или излучения. Эксперимент 1933 г. имел особое значение. Он подтвердил, хотя и для частного случая, не столько предположение Эйнштейна, сделанное им в 1905 г., о том, что вся энергия обладает массой, сколько его еще более смелый и гораздо более важный вывод 1907 г. о том, что