Выбрать главу

Еще раз нарушим строгий хронологический порядок повествования и возвратимся назад. С приездом в Принстон начался последний отрезок жизни Эйнштейна, и вскоре нам придется говорить об осени — том периоде жизни, когда яркие теплые краски бабьего лета сменяются мрачными тонами, олицетворяющими холодное дыхание зимы. 

Предоставим возможность выразить это настроение самому Эйнштейну. Истерзан войной 1918 года. Отклонение света еще не подтверждено. Всемирная слава еще не вторглась в его жизнь. Источник счастья Эйнштейна — его работа. Коллеги уже признают его великим ученым. И тем не менее в восторженности его высказываний присутствует оттенок грусти. Эйнштейн выступает на официальном праздновании по случаю 60-летнего юбилея Планка. Он говорит о Планке, однако в его словах звучит что-то, что можно отнести и к самому Эйнштейну: 

«Как и Шопенгауэр, я прежде всего думаю, что одно из наиболее сильных побуждений, ведущих к искусству и науке, — это желание уйти от будничной жизни с ее мучительной жестокостью и безутешной пустотой, уйти от уз вечно меняющихся собственных прихотей. Эта причина толкает людей с тонкими душевными струнами от личного бытия в мир объективного видения и понимания. Ее можно сравнить с тоской, неотвратимо влекущей горожанина из окружающих его шума и грязи к тихим высокогорным ландшафтам, где взгляд далеко проникает сквозь неподвижный чистый воздух, тешась спокойными очертаниями, которые кажутся предназначенными для вечности. 

Но к этой негативной причине добавляется позитивная. Человек стремится каким-то адекватным способом создать в себе простую и ясную картину мира; и не только для того, чтобы преодолеть мир, в котором он живет, но и для того, чтобы в известной мере попытаться заменить этот мир созданной им картиной. Этим занимаются художник, поэт, теоретизирующий философ и естествоиспытатель, каждый по-своему. На эту картину и ее оформление человек переносит центр тяжести своей духовной жизни, чтобы в ней обрести покой и уверенность, которые он не может найти в слишком тесном головокружительном круговороте жизни… 

Высшим долгом физиков является поиск тех общих элементарных законов, из которых путем чистой дедукции можно получить картину мира. К этим законам ведет не логический путь, а только основанная на проникновении в суть опыта интуиция… Горячее желание увидеть эту предустановленную гармонию является источником настойчивости и неистощимого терпения, с которыми… отдался Планк общим проблемам науки… Душевное состояние, способствующее такому труду, подобно чувству верующего или влюбленного: каждодневные усилия совершаются не по какой-то программе или не с какими-то определенными намерениями, а по велению сердца». 

В 1921 г. Эйнштейн писал своему другу: «Большие открытия — дело молодых… так что для меня это уже позади». И все же между 1917 г. и 1931 г. он не бездействовал. Нам уже известны и его роль в появлении квантовой механики, и бурная реакция на это со стороны физиков. Борьба за правильную интерпретацию квантовой механики привела к изоляции Эйнштейна в научном мире. В 1918 г. выдающийся немецкий математик Герман Вейль — в то время профессор Цюрихского политехникума — предложил столь естественное и остроумное дополнение общей теории относительности, что оно заслуживало лучшей судьбы, чем та, которая выпала на его долю. Кривизна пространства — времени в теории Эйнштейна и — как следствие этого — отсутствие прямых линий привели к тому, что странные вещи стали происходить с направлением движения. Для того чтобы оценить влияние кривизны на направление, давайте рассмотрим искривленную двумерную поверхность Земли. Представьте себе, что два корабля находятся на экваторе на большом расстоянии друг от друга и отправляются в плавание строго на север. Мы, безусловно, готовы были бы согласиться с тем, что оба корабля двигались параллельно, когда стартовали, и с тем, что в дальнейшем они двигались прямо вперед — ведь оба плыли на север, не меняя курс ни вправо, ни влево. И все же по мере движения кораблей в северном направлении вдоль меридианов они бы все больше и больше сближались. А поскольку это так, мы бы, безусловно, отказались от прежнего предположения, что движение кораблей остается параллельным. 

Вейля осенило, что в результате движения могут изменяться не только направления, но и размеры[42] кораблей — если оставаться в рамках нашего примера. Правда, к очертаниям кораблей это не относится. Вейль занялся разработкой вопроса: к чему приведет допущение такого рода изменений размеров? Оказалось, что в результате подобного допущения геометрическая структура пространства — времени должна претерпеть фундаментальные изменения. На первый взгляд может показаться, что если первоклассный математик проявляет желание поиграть такими идеями, то, что ж, он имеет на это полное право. Но планы Вейля шли дальше. Он показал, что, используя эту новую геометрическую структуру пространства — времени, удается естественным образом связать эйнштейновскую теорию гравитации с электродинамикой Максвелла. А это сразу возбуждает наш интерес. Ибо когда Эйнштейн интерпретировал гравитацию как кривизну, он не смог разработать столь же фундаментальную геометрическую интерпретацию для электромагнетизма. А Вейль, взяв за основу введенные им изменения длин, разработал геометрическое описание электромагнитных явлений. Электромагнетизм стал тем самым как бы геометрическим партнером гравитационной кривизны. Таким образом, Вейль создал то, что мы называем единой теорией поля. 

вернуться

42

Это не имеет абсолютно ничего общего с сокращением Фитцджеральда — Лоренца.