... Без биологически направленной мысли биометрическое исследование может привести только к накоплению совершенно ненужных материалов и оказаться совершенно бесцельным. Но, с другой стороны, без математической обработки часто даже очень изощренная биологическая мысль для решения многих актуальных вопросов не в состоянии преодолеть хаос изолированных фактических данных и пробиться сквозь дебри необоснованных предположений.
...Дисперсионный анализ не представляет собой какого-то насилия над материалом, стремления путем математических выкладок "вымучить" из материала вывод, вовсе не вытекающий из него. Напротив, и этот метод, как все математические приемы, при правильном применении является методом, позволяющим получить надежный вывод и там, где на глаз мы не вполне уверены в надежности: это и есть обычный здравый смысл, только облеченный в точную форму.
... По сравнению с другими методами прикладной математики дисперсионный анализ обладает одним огромным преимуществом. Лежащая в основе его теорема аддитивности, несмотря на трудность ее чисто математического доказательства, чрезвычайно проста для понимания, а главное, доступна для постоянной проверки. Вот эта-то возможность постоянно проверять себя, приспособляя метод к конкретным задачам, и делает возможным то, что разработка этого метода для решения задач новых типов может производиться и лицами, не имеющими основательной математической подготовки. Поэтому эта ветвь математической статистики помимо своей плодотворности является и более простой в своем применении, чем многие классические методы. Задачей настоящего руководства и являлось популяризацией этого метода увеличить эффективность работы биологов".
В принципе эффективности центральным пунктом является диалектика в антитезе правильность—точность, в частности противоположение систематических и случайных ошибок. Увеличивая точность, мы теряем правильность, при наращивании правильности теряется точность (см. гл. 6 этой книги). Существенное место в работе занимает также принцип итеративности, т. е. последовательное приближение к цели от ориентировочных этапов ко все более точным. С этим принципом связана идея комплексирования ряда малонадежных показаний в одно надежное. Линейные комбинации исходных признаков, обеспечивающие надежное различие объектов, как раз и являются дискриминантными функциями, используемыми в практической систематике [47]. Основным критерием истинности служит непротиворечивость результатов, согласованность этапов, интерпретируемость картины в целом. А. А. часто говорил о священном принципе: "Да будет выслушана противная сторона!"
Биометрическая деятельность А. А. протекала в трудной борьбе с противниками проникновения математики в биологию. Результаты этой деятельности имеют огромное экономическое значение. Отсылаем читателя к гл. 4 и 5 этой книги.
Точные науки называются точными не потому, что они достоверны, а потому, что в точных науках ученые знают меру неточности своих утверждений.
А. А. Любищев.
Уроки истории науки
Роль математики в общебиологических работах Любищева не менее важна, чем в его конкретных исследованиях. Ю. А. Шрейдер (гл. 6) отмечает два аспекта математизации: четкость и глубину, сливающиеся в синтезе точности знаний и целостности видения мира. Внедрение математического стиля суждений в биологические науки — одна из главных заслуг А. А. Этот стиль был присущ ему органически. Показательны две выдержки из его переписки с Д. Д. Мордухай-Болтовским.[1 Мордухай-Болтовской Дмитрий Дмитриевич (1876—1952) — известный советский математик, геометр.]
"Я думаю постепенно приводить в порядок кое-какие накопившиеся мысли, и здесь часто имеется контакт с математикой ... Я всегда завидовал богатству воображения у математиков (многомерные и неевклидовы пространства, теория множеств, групп и т. д.), но и сам стремлюсь фантазировать в своей области, стараясь обобщать те данные, которые можно извлечь из наблюдения над существующими организмами" (6.1.47 г.).