Я склонен считать и философию, и чистую математику совершенно самостоятельными не науками, а метанауками.
Из письма Р. Г. Баранцеву 30.1.66 г.
В 1958 г. А. А. Любищев начал большой труд "Проблема многообразия органических форм", рассчитанный на 7—8 лет. Философское предисловие к нему вылилось в самостоятельное произведение "Линии Демокрита и Платона в истории культуры", работа над которым стала основной темой до конца жизни, но так и осталась незаконченной. Во введении к "Линиям" читаем:
"Эта книга — главное сочинение моей жизни, резюмирующее все те мысли, которые накопились за несколько десятилетий достаточно напряженной работы... Начав работу как узкий специалист, дарвинист и сознательный нигилист типа Базарова, я постепенно расширял круг своих интересов и начинал сознавать необходимость пересмотра самых разнообразных и часто противоречивых постулатов, которые выдвигались как непреложные истины представителями разнообразных направлений, господствующих в тех или иных областях знаний... Первый набросок, зародыш настоящего сочинения, был составлен мной для себя в 1917 г.
Моя работа имеет некоторое сходство по замыслу с известной книгой Бернала "Наука в истории общества" и в значительной мере является антагонистом этой содержательной и интересной книги. Для биологии, сейчас вступающей в новый период своего развития, такой процесс осмысления имеет еще большее значение, чем для неорганических наук, и вместе с тем биология гораздо теснее связана с политическими проблемами, чем физика и другие точные науки; закрывать глаза на это — значит уподобляться страусу.
За всю жизнь я много читал и думал по общебиологическим и философским вопросам; в этом отношении я квалифицирован больше, чем огромное большинство специалистов-биологов. Мой интерес к математике заставил меня познакомиться с рядом разделов этой замечательной науки, и поэтому я легче разбираюсь в философии точных наук, чем биологи, морфологи и систематики, не сведующие, как правило, в математике... С другой стороны, математики и физики, выступающие с общефилософскими работами, как правило, не понимают всей огромной сложности биологических проблем и противоречивости взглядов умных биологов. Все эти соображения давали мне всю жизнь уверенность в разумности предпринятого мной дела, и я имею право утверждать, что если моя книга будет недостаточно убедительна, то во всяком случае обвинить меня в недостатке обдуманности невозможно.
Изложение проблем мной в значительной степени ведется в историческом аспекте, и этот аспект доминирует в первой части, посвященной неорганическим наукам. Моя попытка стремится ... установить, на основе каких философских и общеметодологических представлений достигнуты представителями физики в самом широком смысле слова (т. е. всей наукой о неорганическом мире) их поразительные успехи и какие уроки может извлечь биология из истории философских направлений в физике".
В главе, посвященной математике, А. А. пишет:
"Подлинный прогресс в математике связан с пифагорейской школой. Здесь вполне определился характер математики, как чистой науки, которой интересуются независимо от ее приложений; поэтому многие ученые считают Пифагора родоначальником чистой математики.
Пифагор впервые поднял знамя сплошной математизации наших знаний... Школа, носившая имя Пифагора, сделала великие открытия в области математики... По-видимому, уже пифагорейцам принадлежит открытие правильных многогранников, теория которых была окончательно развита в школе Платона, отчего они и называются до сих пор Платоновыми телами. В платоновской Академии были заложены основы всех тех отраслей математики, которые получили затем пышное развитие в Александрии. Главнейшими фигурами александрийской школы являются Евклид, Архимед, Эратосфен, Аполлоний и Диофант... Длительный процесс создания исчисления бесконечно малых ведет от Евдокса, Архимеда к Ньютону и Лейбницу. Вся эта линия связана с платоновско-пифагорейским направлением... Последователи Платона в современной математике: теоретико-множественный идеализм Г. Кантора, формализм Д. Гильберта, интуиционизм..."
В главе об астрономии читаем:
"Известно, какое первенствующее значение имеет астрономия в истории человеческой культуры. Здесь мы имеем и первое грандиозное проникновение математики в истолкование внешнего мира, исключительной широты синтез в теории всемирного тяготения и, наконец, огромное влияние на формирование мировоззрения.