Выбрать главу

Но что же отвечал Пуанкаре о том главном, что так нетерпеливо желал знать Ляпунов? Что сказал он о своем методе?

Тут Александра ждало удивление с разочарованием пополам. Никакого особого метода у Пуанкаре не было, был все тот же «метод последовательных приближений». И затруднения, с которыми он столкнулся, были точно того же порядка, что у Ляпунова. Дальше первого приближения французский математик не пошел, нет. Больше того, его тоже постигло разочарование в методе, который пользы уж сделать не может, если даже разыскание второго приближения, которое в смысле доказательства не дает ничего лучшего против первого, представляет непреодолимые трудности.

Откуда же тогда такая решительная уверенность в существовании новой фигуры равновесия? «Только на основании некоторых аналогий и на основании убеждения, что строгое доказательство, хоть оно пока не найдено, все ж таки может быть получено», — отвечал Пуанкаре.

Ляпунов не согласился с доводами французского коллеги, не находя их ни сильными, ни справедливыми. Имея дело с жидкостью, ссылался Пуанкаре на утверждения, выведенные для твердых тел. Снова та же неправомерная аналогия, к которой прибегнул еще Лиувилль и против которой Ляпунов восставал и восставать не перестанет. И снова законность ее никак не доказана, даже приступа к тому не видно. Александру стало досадно, что столь известный и авторитетный математик не заботится думать о строгости обоснования своих заключений. Еще из лекций Чебышева вынес Ляпунов непререкаемое убеждение, что в серьезных математических исследованиях нестрогость вывода не допустима ни под каким видом.

— При решении вопросов технических нестрогость является вещью довольно обыкновенною, тут другая речь, — бывало говорил Пафнутий Львович своим слушателям. — Происходит она не от несовершенства математических методов, а от самой сущности вопросов технических. Но коли имеешь дело с задачей математики, должно проводить доказательство по всей строгости.

И вот французский математик решал задачу Чебышева, как называл ее Ляпунов, дозволяя предосудительную приблизительность рассуждений. Жаль, Пафнутий Львович далеко и не обсудить с ним работу Пуанкаре. Впрочем, и без того ясно, что сей непогрешительный судья по части математической строгости никак не одобрил бы торопливость умозаключений французского коллеги. Но что бы он заговорил о причине прискорбных заблуждений европейских ученых? Тут уж не случайность, если и великий Лаплас, и многоопытный Лиувилль, а теперь и новое светило зарубежной науки Пуанкаре — все повинны в одном грехе.

Очень задевало Ляпунова неправомерное обращение коллег с теоремой Лагранжа, которую упорно тянут в ту сторону, где не дано ей назначения. Так, может быть, причина в самой теореме сокрыта? Или в доказательстве ее? Нет, формулировка теоремы устойчивости в классическом труде Лагранжа вполне строга, к ней нет претензий. Правда, доказательство Лагранжа никого не устроило. Но спустя несколько десятилетий Дирихле доказал теорему. Да еще как! До сих пор в ученых кругах считают его доказательство верхом совершенства и образцом изящества. Все так, нельзя не согласиться с этим. Только в самом ли деле безупречен Дирихле и не дал никакого повода к превратному толкованию? Работая над магистерской диссертацией, Ляпунов пригляделся к его доказательству и обратил внимание на допущенную в нем незначительную вроде бы небрежность, которая могла сыграть пагубную роль. Даже при беглом обзоре статьи Дирихле легко обнаружил Александр следы его неосмотрительности в самой записи формул. Перечисляя координаты, определяющие положение изучаемого предмета, немецкий математик записал подряд первую, вторую, третью координаты, а далее оборвал запись многоточием, мол, и другие. А вот сколько их, других, — понимай как хочешь. Надо бы поставить автору после многоточия еще одну букву для означения последней из употребленных координат, «энной» по порядку. Потому что только для ограниченной их численности, для «энной» количества координат справедливо его доказательство. Но нигде не оговорил того Дирихле. Неизвестно, допустил ли он небрежность или преднамеренность, только нечеткость его изложения произвела много печальных последствий. Создавалось впечатление, будто доказательство теоремы Лагранжа годится и тогда, когда нет среди координат последней, когда бесконечно их множество. Ведь и так можно истолковать ничем не заключенное многоточие. А почему бы в таком случае не применить теорему к жидкости, число частиц которой неисчислимо?