Следующая, чрезвычайно важная серия работ А. В. Шубникова и его учеников связана с предельными группами ортогональной симметрии и их приложениями к физической кристаллографии. Поскольку физическая кристаллография в трудах А. В. Шубникова выделена в отдельную главу, то во всех рассматриваемых работах будут анализироваться только те разделы, которые связаны с развитием собственно теории симметрии. Основоположником этих проблем следует считать П. Кюри, и это легко установить по высказываниям А. В. Шубникова: «Основная заслуга Пьера Кюри заключается в том, что он, занимаясь вопросами симметрии конечных фигур, как кристаллографических, так и некристаллографических, точно установил существование семи предельных групп симметрии, содержащих оси бесконечного порядка. Он же убедительно показал, что предельные группы симметрии могут быть успешно использованы для описания физических свойств кристаллов. Таким образом, явно „некристаллографические“ группы оказались в некотором смысле типично кристаллографическими» [343, с. 33, 34].
Каким же образом А. В. Шубниковым была развита теория предельных групп симметрии? Как было упомянуто ранее, впервые понятие предельных групп симметрии выкристаллизовалось в его монографиях, вышедших в 1940 г. После выхода в свет книги [132] А. В. Шубников вновь возвращается к этой тематике в своих работах 1944 г. [145, 147], за которыми в 1946 г. появилась монография, посвященная этому же вопросу [149]. Определение текстуры, данное А. В. Шубниковым, практически остается в силе и по настоящее время: «Под текстурой мы разумеем всякое однородное тело нерешетчатой структуры, состоящее из множества элементарных частиц любой физической природы, определенным образом (по законам симметрии) ориентированных в пространстве. Примерами текстур могут служить: кристаллические текстуры, состоящие из ориентированных игольчатых или пластинчатых кристаллов; волокнистые материалы вроде дерева; смектические (слоистые) жидкие кристаллы; неслоистые (нематические) жидкие кристаллы, состоящие из ориентированных по длине молекул...» [198, с. 5]. В этих работах практически полностью использованы все основные типы предельных групп симметрии и группы семиконтинуумов. Важность развития этого направления подчеркнута во введении к избранным трудам А. В. Шубникова: «Идея о возможности управления свойствами материалов при частичном упорядочении ориентировок кристаллитов, образующих текстуру, стала сейчас обычной. Она широко используется при создании многих практически важных материалов, прежде всего сегнетоэлектрических керамических текстур — самого распространенного пьезоэлектрика современной пьезотехники, гидроакустики, техники связи. Идеи А. В. Шубникова о симметрии и свойствах подобных анизотропных сред вошли не только в практику. На их основе продолжают решаться многие задачи кристаллофизики» [350, с. 4]. Это направление нашло продолжение в работах И. С Желудева, Ю. И. Сиротина и др. Дальнейшее обобщение состояло в получении групп антисимметрии текстур, также разработанных А. В. Шубниковым [234]. Предельные группы антисимметрии текстур, вначале под флагом предельных точечных групп антисимметрии, появились в его известной работе [173], а в 1960 г. Б. А. Тавгер продемонстрировал их физическую реальность.
Теория предельных групп симметрии, восходя к ранним работам Шубникова, Кюри, Хееша, завершилась работой А. В. Шубникова [162], открывшей с помощью теории симметрии новую главу «тензорной кристаллографии». «Известно, — пишет сам автор, — что многие физические явления, происходящие в кристаллах, могут быть описаны с помощью векторов и тензоров. Приписывая физическим явлениям определенную симметрию, естественно перенести понятие симметрии и на те величины, которыми эти явления описываются, то есть на векторы и тензоры. Первой задачей, которую мы себе ставим в настоящей работе, как раз и является установление понятия симметрии векторов и тензоров. Вторая наша задача состоит в выводе всех возможных групп симметрии векторов и тензоров» [162, с. 347]. Эта работа генетически восходит к книге A. В. Шубникова, Г. Б. Бокия и Е. Е. Флинта [134]. В 1949 г. вышла работа А. В. Шубникова [164]. Дальнейшее уточнение и расширение этих понятий связано в первую очередь с работами И. С. Желудева, В. А. Копцика (особо следует отметить его «Шубниковские группы»).