Выбрать главу

Слоевые группы антисимметрии независимо друг от друга были получены в 1961 —1963 гг. двумя группами исследователей — Н. Н. Нероновой и Н. В. Беловым, а также А. Ф. Палистрантом и А. М. Заморзаевым. Существенно новых групп оказалось 368. Н. Н. Неронова и Н. В. Белов методом цветного центрирования вывели 244 группы антисимметрии стержней. Другими методами этот результат был повторен Э. И. Галярским и А. М. Заморзаевым в 1965 г.

В 1958 г. во втором издании брошюры [232] А. В. Шубников «оперативно» реагирует на бурное развитие теории симметрии: «Вслед за первой работой по антисимметрии, посвященной выводу групп антисимметрии конечных фигур, появились работы, в которых этот вывод был распространен на бесконечные фигуры типа кристаллических решеток (Н. В. Белов, А. М. Заморзаев). Антисимметрию иногда можно представлять как „двухцветную" (черно- белую) симметрию, и тогда она находит отклик в „многоцветной симметрии", начало которой положено Н. В. Беловым. Установленные нами 58 черно-белых групп конечных фигур оказались совпадающими с группами магнитной симметрии кристаллов (Б. А. Тавгер, В. Н. Зайцев). Число бесконечных черно-белых групп, установленное указанными выше авторами и их учениками, составляет 1651, причем нетрудно представить их в виде единой, легко обозреваемой системы, подчиняющейся системе 230 федоровских групп» [232, с. 9]. В том же году А. В. Шубников получил 21 предельную точечную группу антисимметрии, и результаты вывода тут же использовал для описания антисимметрии текстур [234]. В 1959 г. появляется статья А. В. Шубникова [241], в которой выведены предельные группы антисимметрии стержней. В заключении статьи указывается рецептура построения семиконтинуумов с помощью двух непараллельных трансляций, перпендикулярных оси «порождающего» стержня.

В 1961 г. выходит работа А. В. Шубникова [258], написанная, как указывает автор, по образцу опубликованной в 1959 г. полной систематики точечных групп классической симметрии. Все группы автор подразделяет на 14 рядов, каждый из которых порождает одинаковое количество черно-белых, в свою очередь разделенных на 27 бесконечных рядов групп некристаллографической антисимметрии.

В следующем году А. В. Шубников вывел группы (классы) симметрии и антисимметрии конечных и бесконечных лент [263, 264]', в которых он дополнил уже сложившуюся классификацию групп ортогональной и чернобелой симметрии. Группы антисимметрии конечных лент он получил, используя методы Н. В. Белова. Эти же группы были независимо получены в работах Н. В. Белова и его учеников, а также Т. Романом и А. Пабстом.

Последние работы А. В. Шубникова по антисимметрии 1965—1968 гг. посвящены уточнению классификации точечных групп симметрии и получению (на основе принципов антисимметрии) всех 32 кристаллографических классов из 11 аксиальных [299, 300, 329, 332, 335].

Этапы развития антисимметрии приведены в табл. 3, вне которой остались многочисленные усовершенствования системы обозначений групп антисимметрии, работы по их использованию при исследовании природных явлений, структур, форм.

Следующим чрезвычайно интересным расширением понятия антисимметрии является антисимметрия различного . рода. Вот каким образом возникло это направление теории симметрии, восходящее, очевидно, к высказыванию А. В. Шубникова в работе [148]: «При подробной разработке... учения о симметрии и антисимметрии конечных фигур А. В. Шубников остановился преимущественно на черно-белой интерпретации антисимметрии как на самой наглядной и общедоступной. Однако уже в первом своем сообщении об идее антисимметрии в 1945 году он говорит не только о широком разнообразии толкований знака плюс или минус, но и о возможности одновременно приписывать точкам несколько качественно различных знаков (фигуры многообразной полярности). Спустя десятилетие, под влиянием появления первых приложений антисимметрии эту же идею многократной антисимметрии стали развивать (независимо от ее высказывания Шубниковым) молодые математики Кишиневского университета... под названием антисимметрии различного рода...

Таблица 3*
Год Автор Открытие или вывод
1929—1930 Хееш G'2, G'30, G'3 (низшие сингонии)
1945—1951 Шубников Принцип антисимметрии G'30, 31 группа G'320, 17 предельных G'30
1952 Кокрен G'2 через G'32
1953 Заморзаев G'3
1955 Белов, Неронова, Смирнова G'3
1956 Белов G'21
1958 Шубников 21 предельная G'30
1959 Шубников G'321 и семиконтинуумы
1959 Роман G'321 как G'432
1960 Новацкий G'20, G'320
1961 Неронова, Белов G'0, G'10, G'21, G'31, G'32
  Шубников 21 предельная G'30
1962 Пабст G'321
  Шубников G'3210, G'321
  Белов, Кунцевич, Неронова G'321
  Роман G'321
1963 Палистрант, Заморзаев G'32
1964 Палистрант, Заморзаев G'1, G'21, G'321 
1965 Палистрант G'210, G'320 и повторил G'210, G'3210, G'20
  Галярский, Заморзаев G'31 
1966 Копцик G'30, G'3 предельные G'30
1967 Неронова Классификация всех групп
1971 Роман G'31 и некристаллографические