* Ссылки на первоисточники содержатся в монографии А. М. Заморзаева (см. с. 70).
Каждой точке фигуры (конечной или бесконечной) приписываются знаки плюс или минус в / различных (обычнр физических) смыслах (/ может быть любым натуральные числом)».[* Заморзаев Л. М. Теория.,., с. 76.]
Можно сказать, что развитие кратной антисимметрии (или „антисимметрии различного рода) было форсированным. Фактически с 1957 г., когда появилась первая работа А. М. Заморзаева и Е. И. Соколова, до 1965 г. основные результаты были получены в основном А, М. Заморзаевьш, А. Ф. Палистрантом и Э. И. Галярским (табл, 4). Для многократной антисимметрии даже составление каталогов под силу только хорошей ЭВМ. Например, число групп шестикратной антисимметрии на шубниковских группах составляет 419 973 120, чего, видимо, хватит для любых кристаллографических приложений. В порядке соотношения этих результатов с творческим наследием. А. В. Шубникова отметим, что во многих случаях процесс вывода шел по методу Шубникова, а при получении предельных групп двойной антисимметрии Л. А. Шувалов активно применил шубликовскую систематику по типам и рядам. В целом теория кратной антисимметрии разработала. Наиболее «слабые места» на сегодняшний день частично освещены в работе А. М. Заморзаева по теории простой и кратной антисимметрии. Следует ожидать дальнейших нетривиальных приложений теории кратной антисимметрии, расширения и обобщения ее принципов.
Очерк развития теории симметрии второй половины XIX в. был бы не полон, если не упомянуть работы, связанные с формированием и выводом понятий и групп цветной симметрии. Непосредственно в этом процессе А. В. Шубников не участвовал, однако истоки цветной симметрии (и тем более цветной антисимметрии) лежат в его творческом наследии. Трактовка антисимметрии как двухцветной симметрии — прямой к тому путь. В 1956 г. вышли в свет первые работы Н. В. Белова и Т. Н. Тарховой, а в 1958 г. во втором издании брошюры А. В. Шубникова [232] уже помещена вклейка с группами цветной, симметрии.
Вот как «началал цветной симметрии» описывают А. М. Заморзаев с соавторами в, своей фундаментальной работе (табл. 5): «Но антисимметрию можно трактовать и как „двухфазную" симметрию„ оттеняя в ней не противоположность взаимозаменяющихся качеств, а лишь различие и чередование в рамках общности природы, подобно двум фазам одного явления. Тогда естественен переход к „Р-фазной" симметрии, состоящей в приписывании точкам уже не двух, а любого числа однородных качеств, обозначаемых индексами 1„ 2, ... р и переходящих друг в друга по какому-то закону (например, чередуясь циклически) при изометрических преобразованиях' фигуры. Тцкие соображения приведи Н. В. Белова в 1954—1955 годах от двухцветного толкования антисимметрии к идее многоцветной симметрии».[* Заморзаев А. М., Галярский Э. И., Палистрант А. Ф. Цветная симметрия, ее обобщения и приложения. Кишинев: Штиинца, 1978, с. 20.]
* Ссылки на первоисточники содержатся в монографии А. М. Заморзаева, Э. И. Галярского и А. Ф. Палистранта (см. с. 79).
В своей работе 1956 г. по цветной симметрии Н. В. Белов и Т. Н. Тархова группы Gp2 (цветные мозаики) выводят методом «обобщенных проекций» пространственных групп G3.
Дальнейшее развитие теории цветной симметрии связано скорее с теорией групп, чем с «классической» кристаллографией. В 1959 г. в двух появившихся независимо друг от друга работах А. Ниггли и В. Л. Инденбома отмечена связь групп антисимметрии и цветной симметрии с одномерными представлениями обычных групп симметрии. В своей статье В. Л. Инденбом пишет: «В качестве примера, используя цветные таблицы неприводимых представлений точечных групп, можно выписать все магнитные кристаллографические классы...