Можно рассмотреть группы, индуцируемые не только одномерными действительными, но и другими представлениями. Одномерные комплексные представления, в частности, индуцируют «цветные» группы симметрии..., отвечающие таким структурам, в которых объекты разного сорта (разного «цвета») занимает аналогичные места».[* Инденбом В. Л. Связь групп антисимметрии и цветной симметрии с одномерными представлениями обычных групп симметрии. Изоморфизм шубниковских и федоровских групп. — Кристаллография, 1959, т. 4, вып. 4, с. 620.]
В 1960 г. в совместной работе В. Л. Инденбома, Н. В. Белова и Н. Н. Нероновой о точечных группах цветной симметрии эта идея использована для получения 18 точечных цветных классов (практически одновременно эти же 18 групп были найдены и А. Ниггли). Авторы пишут: «Если данная точечная группа обладает одномерным представлением, это значит, что можно найти такую функцию кристаллографического направления, которая под воздействием операции симметрии gi лишь умножается на некоторые множители χCg, называемые характерами представления. Для действительных одномерных представлений χ = ± 1, для комплексных одномерных представлений характеры даются различными степенями комплексных чисел i, ω = ехр (2πi/3) и ε = ехр (2πi/6) = — ω2 В комплексной плоскости умножение на i, ω и ε отвечает, соответственно, повороту на 90, 120 и 60°, что может быть интерпретировано как результат воздействия „цветной" оси 4-го, 3-го и 6-го порядков».[* Инденбом В. Л., Белов Н. В., Неронова Я. Я. Точечные группы цветной симметрии (цветные классы). — Кристаллография, 1960, т. 5, вып. 4, с. 497.] Таким образом, цветные группы и группы антисимметрии появляются в единой схеме расширения групп ортогональной симметрии на основе теории представлений групп и групп перестановок.
Годом раньше Виттке и Гарридо опубликовали свой вывод 211 видов раскраски цветных полиэдров, среди которых, по образному выражению предыдущих авторов, затерялись точечные группы цветной симметрии. Кратко прослеживая дальнейшее развитие «беловской цветной симметрии», укажем, что в середине 60-х годов в основном в многочисленных трудах А. Ф. Палистранта систематически развивался прямой способ вывода цветных групп (шубниковским методом замены образующих). Тем же методом, но используя для контроля одномерные комплексные представления, А. М. Заморзаев осуществил полный вывод пространственных групп р-симметрии.
Наиболее естественным обобщением цветной симметрии является цветная антисимметрия. У ее истоков стоят Г. С. Поли, Н. Н. Неронова и Н. В. Белов. У Г. С. Поли цветная антисимметрия возникла как расширение принципа обобщенных проекций Белова—Тарховой на группы с «переворачивающими» элементами симметрии, а у Н. В. Белова и Н. Н. Нероновой — как система с независимым применением знаков и цвета.
В течение 1960—1980 гг. теория обобщенной симметрии и классификация ее типов интенсивно развивалась исследователями Кишиневской школы (А. М. Заморзаевым, А. Ф. Палистрантом, И. А. Балтагом, В. П. Макаровым, Э. И. Галярским, П. А. Заболотным, А. П. Лунгу, В. П. Баритом, И. С. Гуцулом), В. А. Копциком и его учениками (Ж. Н. М. Кужукеевым, И. Н. Коцевым) и многими другими.
В последнее время П. Л. Дубовым сформулировано понятие языка симметрии, основанное на принципах построения формальных алгоритмических языков программирования. Язык симметрии, в котором роль слов играют отдельные виды групп ортогональной симметрии или любого их расширения, а предложениями являются скопления групп, охватывает любые типы симметрии и перебрасывает «мостки» между теорией симметрии и кибернетикой.
Наборы геометрических преобразований, положенные в основу ортогональной симметрии, не исчерпывают всего множества возможных типов симметрии. История математики показывает, что уже в трудах Архимеда и Аполлония появились геометрические преобразования сжатия «к прямой» (растяжение «от прямой»). Современное «родство» и сжатие или растяжение от точки (гомотетия) лежат в основе аффинной геометрии. Отметим попутно, что, помимо преобразования гомотетии, Аполлоний вводит и преобразование инверсии относительно окружности (одно из конформных преобразований, по современной терминологии). Александрийский математик Папп (III в. н. э.) в «Математическом собрании» описывает гомотетию и инверсию и их комбинации с движениями плоскости, в том числе переносом и поворотом. Симметрия подобия, наряду с гомологией, является частным случаем аффинных преобразований. Проследим генезис этих преобразований вплоть до их окончательного оформления в трудах по геометрии, с одной стороны, и формулировки самого понятия «симметрия подобия» в работе А. В. Шубникова [247].