Выбрать главу

Рис. 8. Зависимость угла между вицинальными гранями и степенью пересыщения раствора.

Влияние электрического потенциала на возникновение центров кристаллизации

Примеси и механические частицы оказывают существенное влияние не только на процесс роста, но и на процесс зарождения кристаллов. Об этом свидетельствуют данные, полученные А. В. Шубниковым совместно с В. Ф. Парвовым при кристаллизации хлористого аммония из раствора под действием электрического поля [257]. При этом интенсивно возникают новые центры кристаллизации. Было замечено, однако, что во влажной атмосфере этот эффект исчезает. Причина явления, видимо, заключается в том, что под действием электрического поля из атмосферы в раствор попадают возбуждающие кристаллизацию твердые частицы хлористого аммония. Если атмосфера влажная, то адсорбция влаги на частицах хлористого аммония приводит к их растворению.

Сила, действующая на частицу, f = qE (здесь q — заряд частицы; Е — напряженность поля в точке, где находится частица) направлена вдоль соответствующей силовой линии в сторону возрастания напряженности. Эта сила возникает из-за неодинакового распределения индуцированных зарядов на противоположных сторонах частицы.

Формы кристаллов и образование сферолитов

Форма роста кристаллов является основным морфологическим признаком, позволяющим установить условия их образования [225]. Нормальная скорость роста из расплава грани может быть представлена в виде:

Vi = aiik),

где Ti — температура равновесия между средой и гранью i-й простой формы; Тk — температура среды у поверхности кристалла; ai — постоянная.

Если для исследуемого кристалла все величины ai, Ti известны, то по ним может быть построена зависимость скорости роста от температуры Тk и воспроизведена форма кристалла для любой температуры Тk.

Предположим, что теплообмен между кристаллом и средой осуществляется путем молекулярной теплопроводности и тетрагональный кристалл имеет только грани призмы {100} и базиса {001}. Если скорость роста граней базиса v1 больше скорости роста граней призмы v2, то кристалл будет иметь столбчатый габитус. При обратном соотношении скоростей — пластинчатый.

Также предположим, что v1>v2, тогда прямая v1 = а11—Тk) лежит выше кривой v2 = а22—Тk), как показано на рис. 9.

Если кристалл возник при значительном переохлаждении расплава (Tk<T), то форма кристалла будет определена из соотношения:

x/z = v1/v2,

где х — ширина кристалла по оси Х; z — его высота по оси Z ┴(001).

Вследствие выделения скрытой теплоты температура кристалла повысится до Т"k. При Т"k, близкой к Т2, отношение v1/v2 может стать очень большим, при Тk = Т2 - бесконечно большим. Это значит, что в подобных условиях рост граней призмы может прекратиться полностью, вследствие чего кристалл будет приобретать все более удлиненную форму. При обратном соотношении v1<v2 он примет уплощенную форму. Такие формы в термодинамическом отношении менее выгодны, чем форма сферолита, образующегося в результате расщепления столбчатого кристалла вдоль оси Z и пластинчатого кристалла вдоль плоскости базиса.

Рис. 9. Зависимость нормальных скоростей v1 и v2 граней базиса и призмы тетрагонального столбчатого кристалла от температуры Т.

Форма шара, покрытого маленькими гранями, имеющими наименьшее из возможных значений удельной поверхности энергии, в энергетическом отношении является более выгодной, чем многогранная. Расщепление сферолита происходит по плоскости спайности, а образован он плоскостями, обладающими наибольшей удельной поверхностной энергией.

Для сферолита, сплошь покрытого гранями {001}, при равенстве объемов кристалла Vk и сферолита Vs имеют место следующие соотношения: