3—5. На стенке трубы должны в нужный момент возникать и исчезать препятствия.
3—6. Помидор движется под действием воздушного потока. Чтобы помидор остановился, нужно в районе остановки уменьшить давление воздуха за помидором (или повысить давление воздуха перед помидором). В нужный момент в стенке должно образоваться отверстие — воздух уйдет в это отверстие. Таким образом, нижняя стенка трубы должна иметь периодически открываемые и закрываемые отверстия.
3—7. Открывать или закрывать отверстия сложно. Отверстия должны быть всегда открыты. Чтобы помидоры не проваливались, отверстия нужно сделать маленькими. Через отверстия мы можем нагнетать или отсасывать воздух. Надежнее отсасывать: это позволит при необходимости остановить помидор у того или иного отверстия.
3—8. Дно трубы имеет небольшие отверстия (рис. 39). Из отверстий отсасывается воздух: сначала из первого отверстия, затем из второго и т. д. Возникает бегущая волна разрежения; помидоры не будут двигаться быстрее этой волны.
Рис. 38. К задаче 12, шаг 3—2.
Это решение совпадает с контрольным ответом (авторское свидетельство № 188364).
4—1. Мы получили возможность управлять движением помидоров, задавая нужный темп движения волны. Проигрыш — усложнение конструкции.
4—2. Чтобы упростить конструкцию, можно отказаться от подачи воздуха в трубу. Пусть бегущая волна разрежения сама передвигает помидоры от одного отверстия к другому. Если мы быстро переключим отсос с первого отверстия на второе, то воздух, втягиваемый во второе отверстие, подтянет помидор к этому отверстию. Затем, переключим отсос на третье отверстие — помидор тоже перейдет к этому отверстию и т. д.
Рис. 39. Пневмотранспортер:
1 — корпус, 2— отверстия, 3 — патрубки, 4 — источник вакуума.
Когда помидор продвинется на три-четыре отверстия, снова начнется отсос воздуха из первого отверстия.
Нижнюю стенку трубы можно сделать широкой и одновременно двигать целые шеренги помидоров.
2—2. а) Толщина пластин стремится к нулю. Допустим4 толщина стала равной диаметру атома. Пластины придется собирать из отдельных атомов.
б) Если толщина пластин 1000 км, тоже придется собирать пластины из отдельных частей.
в) Время изготовления изделия стремится к нулю.
Придется заранее подготовить элементы и собрать изделие, пользуясь какой-то быстродействующей силой.
г) Если на изготовление изделия дано 100 лет, можно использовать медленные естественные процессы, скажем, осаждение частиц из раствора.
д) Стоимость изготовления изделия равна 0. Пластины должны сами собой возникать и соединяться... Как? Может быть, за счет каких-то вредных сил? Тогда мы не только сведем к 0 стоимость изготовления, но и получим бесплатно дополнительный эффект.
е) Если допустимая стоимость очень высока, можно работать в условиях, когда меняются свойства материалов, например, соединять пластинки при обычной температуре, но очень высоком давлении.
Оператор РВС не дал готового решения. Так бывает почти всегда. Смысл применения оператора РВС в том, чтобы расшатать барьеры и тем самым облегчить дальнейшее решение.
Рис. 40. К задаче 13, шаг 3—2.
2—3. Даны два материала — А (легкоплавкий и Б (тугоплавкий). Известными способами трудно получить из этих материалов тонкую «слоёнку».
2—4. а) Материал А, материал Б. б) —
2—5. Материал А. (Он легче плавится, то есть легче изменяется.)
3—1. Материал А сам образует «слоёнку» с материалом Б.
3—2. См. рис. 40.
Теперь видно, что процесс образования «слоёнки» состоит из двух действий. Надо, чтобы лежащие порознь материалы А и Б образовали один общий объем. А затем они должны определенным образом расположиться в этом объеме. Значит, можно уточнить ИКР.
Рис. 41. Окончательный вариант шага 3—2 к задаче 13.
Вот как уточнялся ИКР при решении этой задачи в Азербайджанском общественном институте изобретательского творчества (объектом был взят материал Б).
Слушатель: Материал Б сам влезает в А и упорядоченно располагается в нем.
Преподаватель: Здесь два действия: «влезает» и «упорядоченно располагается» — значит, и две задачи.
Слушатель: Первая легко решается. Чтобы материал Б «влез» в материал А, надо бросить Б в расплавленное А.