Выбрать главу

Оператор РВС - серия мысленных экспериментов, помогающих преодолевать привычные представления об объекте. При использовании оператора РВС последовательно рассматривают изменение задачи в зависимости от изменения трех параметров: размеров (Р), времени (В), стоимости (С).

Рассмотрим, например, применение оператора РВС к простой задаче: «Найти способ регулирования сечения трубопровода, по которому движется пульпа» (см. табл.1).

Оператор РВС не дает точного и однозначного ответа. Цель применения оператора РВС в том, чтобы получить серию идей, направленных «в сторону решения». Это помогает преодолевать психологические барьеры при дальнейшем анализе задачи.

Рассмотрим еще один пример. Допустим, решается задача о способе обнаружения неплотностей в агрегатах холодильников (см. табл. 2).

При мысленных экспериментах с задачей по опера-

Таблица 1

???? Шагн Операции Изменение объекта (или процесса) Как решается измененная задача Принцип, использованный в решении

???? 2-2а Р-*0 dTp«^ 1 м Регулировать сечение, сдавливая стенки (они стали тонкими и гибкими). Деформация стенок.

???? 2-26 Р-*соdrp» 1000 м Такой трубопровод подобен реке. Надо построить плотину или ждать естественного регулирования - замерзания, таяния. Плотина (это та же задвижка) будет истираться. Лучше- изменение агрегатного состояния потока.

???? 2-2в В-»0 Перекрывать надо за 0,001 сек. Нужно нечто быстродействующее, например, электромагнитное поле. Вместо механического рабо чего органа (задвижка) -элек-тромагнитный.

???? 2-2г В-+со Перекрывать трубопровод надо за 100 дней. Механическая задвижка будет сильно истираться (с уменьшением сечения растет скорость потока). Надо как-то восстанавливать стертые части. Задвижка с нарастающими частями.

???? 2-2д С-»0 Стоимость перекрытия близка к нулю. Поток должен сам себя перекрывать. Саморегулирование.

???? 2-2е С-*со Стоимость перекрытия свыше 1000 000 руб. Можно ввести в поток нечто дорогое, но легко поддающееся регулировке. Например, вместо воды использовать расплав металла. Регулировку вести электромагнитами. «Регулирующиеся добавки».

тору РВС ответы могут быть разными - это зависит от

фантазии, знаний, опыта, словом, от индивидуальных ка-

Таблица 2

???? Шаги Операции Изменение объекта (илн процесса) Как решается измененная задача Принцип, использованный в решении

???? 2-2а Р-*0 Длина змеевика меньше 1 мм Количество просочившейся жидкости мало. Надо сделать эту жидкость более «обнаруживаемой». Что-то добавить. Микродобавки, оббегающие обнаружение.

???? 2-26 Р-»СО Длина змеевика больше 100 км Обнаружение на расстоянии - локация, радиолокация, термолокация. Обычный осмотр (светолокация). Локация в обычных и ии-' фра красных лучах, радиолокация.

???? 2-2в В-»0 Обнаружить надо за 0,001 сек. Исключаются механические и химические способы. Остаются электромагнитные и оптические. Излучение электромагнитное или оптическое.

???? 2-2г В - со Обнаруживать надо за 10 лет. Вытекающая жидкость будет реагировать с материалом змеевика. По изменению внешнего вида материала легко обнаружить место утечки. Материал змеевика - индикатор вытекающей жидкости.

???? 2-2д С-0 Стоимость обнаружения близка к нулю. Просачивающаяся жидкость достаточно сильно сообщает о себе. Самообнаружение, самосигнализация.

???? 2-2е С-»с© Стоимость обнаружения - миллион рублей. Добавлять в раствор нечто дорогое, но легко обнаруживаемое. Индикаторные добавки.

честв человека. Нельзя только заменять исходную задачу другой. Так, в ггоследнем примере при ответе на 2-2е нельзя сказать: «Повысить качество изготовления холодильника»- хотя, конечно, разумнее предотвратить появление неплотностей, чем бороться с ними. Надо решать ту задачу, которая выбрана в первой части АРИЗ. Если

выбрана задача обнаружения неплотностей - именно ее и надо исследовать.,,

В некоторых задачах вместо «размеров» можно рассматривать другие количественные параметры. Например, в задаче: «Найти способ подачи в реактор 24 порошков по заданным графикам» - можно взять количество порошков (2-2а: один порошок, 2-26: тысяча или десять тысяч порошков).

На преодоление психологической инерции рассчитан и следующий шаг (2-3). Возьмем, например, такую задачу: найти способ изготовления стеклянного куба (фильтра) с ровными капиллярными сквозными отверстиями (длина ребра куба - до 1 м, количество капилляров- несколько десятков на квадратный сантиметр). Условия задачи навязывают (притом неощутимо) определенное исходное представление: дан стеклянный куб, надо проделать в нем капилляры. При решении на рисунках появляются куб и круглые (это привычно) отверстия. В большинстве решений сохраняется это исходное представление: предлагают тем или иным способом делать отверстия в сплошной стеклянной заготовке (твердой или жидкой).

Изменим теперь формулировку задачи: «Найти способ изготовления воздушного куба со стеклянными продольными перегородками». Или: «Найти способ изготовления воздушного куба со многими тонкими стеклянными стержнями, «нитями». Стеклянный куб с дырками - это все равно что воздушный куб со стержнями, поскольку дырки тоже могут быть названы воздушными стержнями.

В силу чисто психологических причин мы видим «стеклянный куб с дырками», а не «воздушный куб со стеклянными стержнями», хотя это совершенно равноправные определения. Если задача дана во второй формулировке, она решается быстро и легко (куб можно собрать из стеклянных нитей).

В сущности, когда от «стеклянного куба с воздушными отверстиями» мы переходим к «воздушному кубу со стеклянными стержнями», привычное переводится в непривычное, то есть совершается операция, о которой говорит У. Гордон, автор синектики. Однако синектика не указывает способов превращения привычного в непривычное, она лишь призывает к подобным превращениям. В АРИЗ такая операция запрограммирована в шагах

2-^-2 (оператор РВС) и 2-3. Отвечая на вопросы шага 2-3, мы переходим от неправильной формулировки задачи к правильной, в которой нет акцента на одном элементе (стекле). Системный подход заставляет увидеть все элементы (а это в большинстве случаев непривычно).

Правильное выполнение шага 2-3 существенно облегчает решение задачи. При выполнении этого шага надо тщательно следить за тем, чтобы: ' ' а) из формулировки задачи были убраны специальные термины;

б) были правильно перечислены все элементы, входящие в рассматриваемую систему.

Например, в формулировке «Дана система из стеклянного куба и капилляров» две ошибки: 1) слово «капилляр» лучше заменить словом «отверстие» и 2) «стеклянный куб» - это сплошной куб, а у нас то, что осталось от куба после того, как в нем проделали множество отверстий. Правильная формулировка: «Дана система из отверстий и стеклянных стенок между ними».

Разложив систему на элементы, надо выбрать тот, который необходимо изменить, чтобы решить задачу (шаги 2-4 и 2-5). Главный признак, по которому ведется выбор,- степень изменчивости, управляемости. Чем легче менять элемент (в условиях данной задачи), тем больше оснований взять этот элемент в качестве объекта для дальнейшего анализа. Здесь есть простое (хотя и не универсальное) эмпирическое правило: к 2-4а обычно относятся объекты технические, к 2-46 - природные. Многие изобретательские ошибки (ниже это будет показано на примерах) объясняются стремлением менять элементы, относящиеся к 2-46.

–Реализация первой и второй частей АРИЗ требует - для средней задачи - не более двух часов фе считая, конечно, времени, необходимого на ознакомление с патентной литературой). Надо сказать, что ни один шаг не был включен в алгоритм без многократной практической проверки на семинарах. При этом в алгоритм вошли только такие шаги, которые существенно облегчали процесс решения. Есть немало приемов, подходов, методов, иногда оказывающихся полезными, но, в общем, не обязательных. Алгоритм, рассчитанный на человека, должен быть компактным: слишком долгий разбег не оставляет сил для прыжка, для взлета. И наоборот: когда каждый