Для АИ сравнение моделей — банальная операция вычитания двух строк цифр. Выраженная цифрами модель разделена на разряды со своими значениями. Можно предположить, что в первом разряде представлена наиболее обобщенная модель (какое-то материальное тело), во втором — крупные структурные блоки (голова, туловище, ноги, отличающие человека), в последующих разрядах — детали. Такой образ всегда имеет место, когда мы воспринимаем объект, даже при фокусировке зрения на его деталях. По этим разрядам и будет осуществляться сравнение.
Сравнение известной модели с неизвестными лежит в основе распознавания образов. По модели объекта, отпечатанного с рецептора в кратковременной памяти, которая не имеет связей с другими моделями и, следовательно, является неизвестной, нужно найти модель-эталон, имеющую такие связи, иначе говоря, входящую в различные «фразы» и числящуюся в «словарях». Именно связями определяется то, насколько знаком нам тот или иной объект: чем больше связей, тем лучше мы его знаем. Вероятность распознавания определяется точностью совпадений неизвестной модели с эталонами. Множественное число я употребил не случайно: объект может походить на несколько других, известных.
Распознавание в СИ осуществляется автоматически: ансамбль возбужденных с рецептора элементов, который представляет собой модель неизвестного объекта, накладывается на другую модель. Она активируется, а затем активируются связанные с ней модели, опознающие объект. Поочередно может активироваться несколько похожих моделей, каждая со своей степенью сходства.
В АИ для распознавания модели нужна специальная программа извлечения из постоянной памяти серии моделей и сравнение каждой из них с моделью объекта. Выборка моделей из памяти должна производиться начиная с самого обобщенного признака — «буквы». По ней выбирается «словарь» и далее сравниваются вторые и следующие «буквы», так же как производится поиск значения «слова» по «словарю». «Известность» наиболее близкого из искомых «слов» определяется числом вхождений его в «словари фраз». Степень вероятности опознания объекта определяется совпадением последних «букв» — деталей, потому что по первым «буквам», определяющим обобщенные признаки, всегда можно найти много похожих. Человека легко отличить от других объектов, труднее распознать — кто есть кто.
Остановлюсь на двух обстоятельствах, осложняющих распознавание. Первое — «неполнота» модели объекта, обусловленная помехами восприятия, дальностью расстояния или недостаточным напряжением рецептора. Неполнота или неясность первичной модели выражается в отсутствии ряда деталей, в «крупноблочности». При этом всегда присутствует «буква», объясняющая неполноту,— показатель низкой настройки рецептора или наличия внешних помех. Я намеренно не употребил понятие «обобщенность» применительно к такой модели, потому что оно предусматривает выражение модели крупными блоками в результате специального отказа от деталей, а не отсутствия их из-за плохого восприятия. Неполную модель можно распознать, только сравнивая ее с обобщенными моделямиэталонами, чем и определяется полнота распознавания. Например, видно, что объект — человек, но мужчина это или женщина, определить нельзя из-за неясности образа. Более четкую первичную модель можно получить за счет настройки рецепторов или приближения к объекту.
Рис. 20. Схема гипотетических «рельсов» в «рецепторном поле», позволяющих производить приведение модели к одному определенному размеру. В памяти хранится модель а. При восприятии объекта с близкого расстояния большая модель б уменьшается до размеров а; при восприятии объекта с большого расстояния малые модели в или г увеличиваются до размеров а.
Второе обстоятельство — это различие в размерах первичной модели и моделей-эталонов. Общеизвестно, что человек может распознать объект с разного расстояния, если он хорошо изучен вблизи. Распознавания прямым наложением моделей здесь не получится. Нужно допустить специальный механизм приведения модели к одному определенному размеру в виде своеобразных «рельсов» в «рецепторном поле», как показано на рис. 20. «Рельсы» эти позволяют изменять размер первичной модели, сохраняя сходство. По всей вероятности, нечто подобное есть в зрительной области коры. Для АИ перекодирование первичной модели цифровым кодом должно предусматривать приведение к стандартному размеру моделей-эталонов.